

[image: Cover: The Real Internet Architecture, PAST, PRESENT, AND FUTURE EVOLUTION by Pamela Zave and Jennifer Rexford]

THE REAL INTERNET ARCHITECTURE
PAST, PRESENT, AND FUTURE EVOLUTION

The Real Internet Architecture
PAST, PRESENT, AND FUTURE EVOLUTION

PAMELA ZAVE

JENNIFER REXFORD

PRINCETON UNIVERSITY PRESS

PRINCETON & OXFORD

Copyright © 2024 by Princeton University Press

Princeton University Press is committed to the protection of copyright and the intellectual property our authors entrust to us. Copyright promotes the progress and integrity of knowledge. Thank you for supporting free speech and the global exchange of ideas by purchasing an authorized edition of this book. If you wish to reproduce or distribute any part of it in any form, please obtain permission.

Requests for permission to reproduce material from this work should be sent to permissions@press.princeton.edu

Published by Princeton University Press

41 William Street, Princeton, New Jersey 08540

99 Banbury Road, Oxford OX2 6JX

press.princeton.edu

All Rights Reserved

ISBN 978-0-691-25579-8

ISBN (pbk.) 978-0-691-25580-4

ISBN (e-book) 978-0-691-26185-0

Version 1.0

British Library Cataloging-in-Publication Data is available

Editorial: Hallie Stebbins

Production Editorial: Kathleen Cioffi

Cover Design: Wanda España

Production: Erin Suydam

Publicity: William Pagdatoon

Copyeditor: Nancy Marcello

Cover image by Yolanda V. Fundora and Pamela Zave

from Pamela:

for Yolanda

here, there, and everywhere

from Jennifer:

for Susan, Natasha, and Ursula

to my family, with love

CONTENTS

	Preface     xiii

	1   Introduction     1

	1.1   What and for whom     1

	1.2   A brief conventional history of the Internet     2

	1.2.1   Fundamental concepts     2

	1.2.2   The classic Internet architecture     4

	1.2.3   Success and ossification     5

	1.2.4   Teaching about networking     6

	1.2.5   Networking research     7

	1.3   An alternative view of the Internet     7

	1.3.1   Past evolution     8

	1.3.2   The current Internet     9

	1.3.2.1   End-to-end communication     9

	1.3.2.2   Assembling networks with bridging     10

	1.3.2.3   More security     11

	1.3.2.4   Assembling networks with layering     13

	1.3.2.5   More layering     14

	1.3.2.6   Assembling networks with subduction     16

	1.3.2.7   Summary of the example     17

	1.3.3   Future evolution     18

	1.4   Purposes and a new approach     18

	1.5   A new model of network architecture     19

	1.5.1   Fundamental concepts     19

	1.5.2   Brief comparison to the classic Internet architecture     22

	1.5.3   Characteristics of the model     24

	1.5.3.1   More on accuracy and precision     24

	1.5.3.2   On terminology     25

	1.5.3.3   Modularity, repetition, and patterns     26

	1.5.3.4   More on generality and formality     28

	1.6   Organization of the book     28

	1.7   Bon voyage     31

	2   Describing Networks and Services     32

	2.1   Introduction     32

	2.2   Basic concepts     33

	2.2.1   Network services     33

	2.2.2   Components of a network     34

	2.2.2.1   Members     34

	2.2.2.2   Names     35

	2.2.2.3   Links     36

	2.2.2.4   Network topology     37

	2.2.2.5   Network views     37

	2.2.3   Authority and management     38

	2.2.4   Routing and forwarding     39

	2.2.4.1   Routing     39

	2.2.4.2   Forwarding     41

	2.2.4.3   Implementing anycast, broadcast, and multicast     44

	2.2.5   Sessions and session protocols     45

	2.2.5.1   Session basics     45

	2.2.5.2   Session endpoints and session state     47

	2.2.5.3   Session services     49

	2.2.5.4   Header formats and protocol embedding     50

	2.3   Example: Ethernets     52

	2.3.1   Physical links     52

	2.3.2   Ethernet members and names     53

	2.3.3   Ethernet routing and forwarding     54

	2.3.4   Ethernet services     55

	2.4   Example: Internet Protocol networks     56

	2.4.1   Hierarchical namespace     56

	2.4.2   IP members and links     57

	2.4.3   IP forwarding     58

	2.4.4   IP routing     59

	2.4.5   IP session protocols     60

	2.4.6   IP services     62

	2.5   Other network designs     63

	2.5.1   Mobile ad-hoc networks     63

	2.5.2   Named Data Networks     66

	2.5.3   Resilient Overlay Networks     68

	2.5.4   Multi-Protocol Label Switching networks     70

	2.6   Properties of networks and services     73

	2.6.1   Topological properties     74

	2.6.2   Performance properties     74

	2.6.2.1   Requirements and goals     74

	2.6.2.2   Facts and assumptions     77

	2.6.3   Logical properties     77

	2.6.3.1   Requirements     78

	2.6.3.2   Facts and assumptions     78

	2.7   Conclusion     79

	3   Composing Networks and Services     80

	3.1   Introduction     80

	3.2   Bridging     80

	3.2.1   Definition of bridging     80

	3.2.2   Example: Bridging networks in the Internet     82

	3.2.2.1   The physical hierarchy     83

	3.2.2.2   The business hierarchy     84

	3.2.2.3   Routing among bridged networks of the Internet     84

	3.2.3   Compound sessions     86

	3.2.4   Example: Bridging private networks with the public Internet     87

	3.2.4.1   The problem of private IP networks     87

	3.2.4.2   A solution to the problem of private IP networks     87

	3.2.5   Example: Interoperation of heterogeneous networks     88

	3.3   Layering     89

	3.3.1   Definition of layering     89

	3.3.2   Details of layering     91

	3.3.3   Example: Implementation of IP links between forwarders     92

	3.3.4   Example: Ethernets as IP underlays     94

	3.3.4.1   The IP edge network     94

	3.3.4.2   Implementing IP links     95

	3.3.4.3   IP-over-Ethernet control protocols     96

	3.3.5   Example: Layering the World-Wide Web on the Internet     97

	3.3.5.1   Members and names in the Web     98

	3.3.5.2   Sessions in the Web     98

	3.3.5.3   Links in the Web     100

	3.3.5.4   The Domain Name System     101

	3.3.5.5   Solutions to the problem of load balancing     102

	3.4   Other examples of layering     106

	3.4.1   Resilient Overlay Networks     106

	3.4.2   Tor     107

	3.4.3   Virtual local area networks     108

	3.4.4   Layered Multi-Protocol Label Switching networks     110

	3.4.5   Cloud computing     112

	3.4.5.1   Tenant networks     112

	3.4.5.2   Data-center networks     113

	3.4.5.3   Layering tenant networks on a data-center network: Topology and data structures     115

	3.4.5.4   Layering tenant networks on a data-center network: Implementation of dynamic virtual links     117

	3.5   Conclusion     118

	4   The Real Internet Architecture     119

	4.1   Introduction     119

	4.2   Layering for reachability     120

	4.2.1   The base Internet     120

	4.2.2   Virtual local area networks     122

	4.3   Layering for routing scalability and flexibility     122

	4.3.1   How layering decomposes the routing problem     123

	4.3.2   Example: Inter-network versus intra-network routing in the Internet     124

	4.3.3   A quantitative view of layered routing     126

	4.3.3.1   “Layering as optimization decomposition”     126

	4.3.3.2   Layered NUM problems     128

	4.4   Layering for resource sharing or “slicing”     130

	4.5   Layering for enhanced Internet services     131

	4.5.1   Virtual edge networks     132

	4.5.2   Subduction     133

	4.5.2.1   A first example of subduction     133

	4.5.2.2   More examples of subduction     135

	4.5.3   Example: Provenance of the AT&T packet     137

	4.5.3.1   Part 1: Application and enterprise networks     137

	4.5.3.2   Part 2: 4G or 5G mobile network and its underlays     139

	4.5.3.3   Putting the two parts together     140

	4.6   Present and future evolution     142

	4.7   Principles of Internet design     143

	4.7.1   The original end-to-end principle     143

	4.7.2   The new end-to-end principle     144

	4.7.3   The “tussle” principles     144

	4.8   Evolution of the base Internet     145

	4.8.1   Replacing IPv4 and IPv6     145

	4.8.1.1   SCION     146

	4.8.1.2   Sharing resources among old and new networks     146

	4.8.1.3   Creating end-to-end paths of new networks     147

	4.8.2   Private IP transit networks     149

	4.9   Conclusion     151

	5   Patterns for Enhanced Network Services     152

	5.1   Introduction     152

	5.2   Minimal definition of the base Internet     153

	5.3   Obstacles and enhanced services     154

	5.3.1   Endpoint limitations     154

	5.3.2   Network limitations     155

	5.3.3   Insufficient security or privacy     156

	5.3.4   Side-effects of beneficial network features     156

	5.4   Session architecture     157

	5.4.1   Session review     157

	5.4.2   Broadcast and multicast sessions     158

	5.4.2.1   Group communication     158

	5.4.2.2   Allcast (broadcast or multicast) sessions     159

	5.4.3   Compound sessions     161

	5.4.4   Protocol embedding     161

	5.4.4.1   An operational description of embedding     162

	5.4.4.2   Subsessions     163

	5.4.4.3   Protocol embedding and compound sessions     164

	5.4.4.4   Constraints on embeddings     165

	5.5   Comparison of mechanisms for adding services     166

	5.5.1   Services requiring a session protocol     167

	5.5.2   Services requiring middleboxes     167

	5.5.2.1   Middleboxes inserted with compound sessions     167

	5.5.2.2   Middleboxes inserted by routing and forwarding     169

	5.5.3   Services requiring routing and forwarding     170

	5.5.4   Services requiring layering     170

	5.5.4.1   Who can add a layer?     170

	5.5.4.2   Services requiring a namespace     171

	5.5.4.3   Having it all     171

	5.6   Example: Mobility     173

	5.6.1   Definitions of mobility patterns     174

	5.6.2   Uses of dynamic-routing mobility     175

	5.6.3   Uses of session-location mobility     177

	5.6.3.1   Session-location mobility for the World-Wide Web     178

	5.6.3.2   Interoperation     179

	5.7   Example: Inter-network multicast     180

	5.8   Example: Security and privacy     182

	5.8.1   Traffic filtering for security     182

	5.8.1.1   Network-specific attacks     183

	5.8.1.2   Network-specific traffic filtering     184

	5.8.2   Layering for security and privacy     185

	5.9   Example: Firewall traversal     187

	5.9.1   The problem with firewalls     187

	5.9.2   Helping sessions survive     188

	5.9.3   Externally initiated sessions     188

	5.10   Conclusion     190

	6   Ideas for a Better Internet     191

	6.1   Introduction     191

	6.2   Internet standards     192

	6.2.1   Session architecture     192

	6.2.2   Layering and subduction     194

	6.2.2.1   Algorithms and data     194

	6.2.2.2   Varied implementations of the standard     196

	6.3   Verification and security     196

	6.3.1   Example: Global private multicast     197

	6.3.1.1   Multicast properties     198

	6.3.1.2   Security properties     199

	6.3.1.3   Link performance properties     200

	6.3.1.4   Modular verification of the properties     200

	6.3.2   Example: Secure enterprise network     201

	6.3.2.1   Security properties     201

	6.3.2.2   Modular verification of the properties     203

	6.3.3   Example: Flow-affinity overlay     204

	6.3.4   A research agenda for modular verification and security     207

	6.4   Principles of network architecture     208

	6.4.1   Middleboxes     208

	6.4.2   Reliable delivery and mobility     210

	6.4.3   Routing and congestion control     212

	6.5   Implementation and optimization     213

	6.5.1   A research agenda for modular implementation and optimization     213

	6.5.2   Example: Optimization of a programmable pipeline     213

	6.6   Thoughts on teaching networking     215

	6.7   Conclusion     216

	Glossary     219

	Bibliography     229

	Index     235

PREFACE

PAMELA AND JEN first met a quarter-century ago at AT&T Labs, where we both worked at the time. The early years of our friendship were preoccupied with rollerblading, beer, and office politics.

Eventually tiring of corporate gossip (but not rollerblading or beer), we shifted topics to our troubles with the Internet. Pamela was working on AT&T’s first public voice-over-IP offering, and grappling with the challenges of building applications atop the Internet. Jen was working on ways to manage AT&T’s IP backbone network, and struggling with how to measure and configure the underlying network protocols. Everything seemed much harder than it should have been.

We started to wonder how the Internet is put together, feeling that the books and papers we were reading did not answer our fundamental questions. We took deep dives into the thorniest topics, such as mobility and security. We soon noticed how different our viewpoints were. With a background in software engineering and formal verification, Pamela wanted to think about networks in a way that was precise, principled, and general. Coming from the perspective of practical networking, Jen wanted a way to reason about networks that was faithful to the complex realities of network protocols and practices.

After years of exploration, we were able to fit our observations into a coherent model that answered many of our questions. In some cases, a few “design patterns” (a software-engineering term!) could explain a wide range of solutions from the networking literature and operational practice. The model seemed both principled and useful, with the potential to fulfill ambitions held by each of us.

As our thoughts matured, we considered the model’s potential for teaching. In 2017 Pamela taught a graduate seminar at Princeton University on this material, greatly extending the model and the breadth of our examples. We also realized that the model answered many questions about the evolution of the Internet since its inception. Although we wrote a paper at that time, it became clear that a paper-length treatment was not sufficient, and that only a book would do.

This book is our hard-won answer to the question, “What is the best way to describe the architecture of network ecosystems such as the Internet, so that people can understand them better, build them better, and (in particular) work toward a better Internet?” For practitioners, we show how our model can be used to compare design alternatives and to guide the ongoing evolution of the Internet in the face of new applications, technologies, business practices, and security threats. For educators, the book can offer new ways to convey the field’s ever-growing set of topics in a concise and intuitive manner. For researchers, the book proposes a new way of thinking about network architecture, and outlines promising directions for future work.

We believe that students and professionals alike will benefit from reading this book. It rises above the details while remaining faithful to them, and we hope that many audiences can learn from its insights and appreciate its surprises. Reading it does not require prior knowledge of computer networking, although it does require a general knowledge of computing, and some exposure to Internet basics will be helpful.

We have just one piece of advice about how to read the book, which is: read it in order. The chapters explain the ideas in gentle steps, always building on the previous material. As it is not a reference book, excerpts taken out of context may not be very helpful. And we hope you enjoy reading it as much as we have enjoyed writing it!

Acknowledgments

By the fall of 2021 we had a complete first draft. We held a seminar at Princeton University for faculty and students, who read a section of the book every week and met to discuss it. We are especially grateful, for their faithful attendance and enthusiastic participation in the seminar, to Lennart Beringer, Henry Birge-Lee, Aarti Gupta, Devon Loehr, Oliver Michel, Divya Raghunathan, Sata Sengupta, John Sonchack, Tim Thijm, and Yaxiong Xie. They helped mold the book into something you might want to read.

We also benefited tremendously from detailed, thoughtful, and perceptive comments from David Andersen, Mina Tahmasbi Arashloo, Matt Caesar, Brian Kernighan, Jim Kurose, Michael Schapira, John Sonchack, and Sophia Yoo.

Other colleagues, throughout this long process, have been generous with their advice, information, and inspiration. In particular, we would like to thank:

Chris Ramming, for encouraging Pamela to think about the principles of networking,

Greg Bond, Eric Cheung, Hal Purdy, and Tom Smith, for making it fun for Pamela to learn about the Internet the hard way,

John Day, for his seminal book Patterns in Network Architecture,

Ken McMillan, for recognizing the analogy between a funny kind of layering and the geological phenomenon of subduction,

Moshe Vardi, for inviting our Communications of the ACM article on “The compositional architecture of the Internet” and supporting its publication,

David Clark, for his open-minded engagement in reviewing the article,

Shir Landau-Feibish, Robert MacDavid, and Ross Teixeira, for pushing us to write about networking without drowning our readers in acronyms,

Larry Peterson, for sharing his experience with book publication,

Bertrand Meyer, for advice about writing books,

Yolanda Fundora, for her 24/7 Adobe Illustrator helpdesk,

and last but not least, the Wikimedia Foundation, for supporting Wikipedia, the indispensable encyclopedia in which all the gritty details can be found.

This project could not have been completed without the support and encouragement of our spouses, Yolanda Fundora and Natasha Haase.

Pamela Zave Summit, New Jersey

Jennifer Rexford Princeton, New Jersey

1
Introduction

1.1. What and for whom

This is an exciting time in computer networking. The Internet is one of the most influential inventions of all time—a research experiment that, within our own lifetimes, escaped from the lab to become a global communications infrastructure. The Internet has ever-wider reach, with billions of users today and a future that promises to connect the world’s entire population. We see seemingly non-stop innovation in networked devices (the Internet of Things), link technologies (fiber optics, cellular radio, microwaves, short-wavelength radio), and applications (social networks, telemedicine, finance, virtual worlds, smart factories, connected cars, environmental monitoring, power grids, blockchains). To make our lives more interesting, there is also non-stop innovation in threats to the security and privacy of Internet users. After a long series of scientific achievements [29], many network elements are now programmable, so the potential of networks to provide new services has been greatly expanded. Students who choose to study networking will have an ample supply of interesting problems, and a solution to any one of them might change the world.

Ironically, this is also a time when many people believe that the architecture of the Internet has become rigid and unchanging—“ossified” is a favorite word—and that its resistance to evolution is holding back progress. §1.2 summarizes this opinion and the Internet history that supports it.

The “architecture” of something is always a description of it. A style of description that people elevate to the prime position of an “architecture” is a representation of the most important, organizing characteristics, and the characteristics that best relate the structure of the artifact to its purpose and functions.

We believe that the Internet architecture has evolved dramatically since its early days, and that it continues to evolve. Its evolution is poorly understood because too many people rely on a description of it, called here the “classic” Internet architecture, that was valid around 1993 but is valid no longer.

Our goal in this book is to explain how the Internet has evolved up to this time, how it works now, and where it might be going. This goal demands a better style or language of description, one that encompasses the Internet’s original or “classic” architecture, its current architecture, and all its possible future architectures. Consequently, the book introduces a new style or language of description, called compositional network architecture, to play this crucial role.

In the next few sections, §1.2 explains the “classic” Internet architecture and the arguments for ossification. In contrast to §1.2, §1.3 presents the evidence for Internet evolution. Then §1.4 explains our purposes and approach in more detail, and also provides a preview of the remainder of the chapter.

We expect this book to be interesting to anyone involved with today’s computer networks, regardless of whether they are engineers (network designers and operators), academics (faculty and graduate students), researchers, or product developers. The book is not an introductory text, however, and readers will get the most out of this book if they have the kind of general knowledge taught in an undergraduate networking course.

1.2. A brief conventional history of the Internet

1.2.1. Fundamental concepts

Before the Internet, electronic communications were carried by broadcast networks for radio and television, and by the Public Switched Telephone Network (PSTN).

The dominant characteristic of the PSTN is “circuit switching.” A “circuit” is a pathway of physical resources, sufficient to carry the bandwidth of a voice call. In circuit switching, at the beginning of a call the network allocates a circuit end-to-end which is dedicated to that call. The circuit resources are not released until the call ends. A large physical link, termed a “trunk,” can support many circuits, but its upper limit on circuits is inflexible. A telephone circuit is only fully utilized when both people are talking continuously at the same time. Thankfully most people listen some of the time, so most circuits in the PSTN are under-utilized.

Two other characteristics of the PSTN are also relevant to Internet history. First, in most countries the PSTN was a legal monopoly, and therefore under centralized control. Second, the PSTN is a person-to-person network, and the person-to-network interface is a telephone handset, with very limited capabilities. Considering that the PSTN pre-dated modern computers by about 70 years, it is not surprising that the original user interface was primitive by today’s standards. But the user interface remained simple throughout the lifetime of the PSTN, primarily because the duty of a public utility (a legal monopoly) is to serve all customers reliably, whether they have the latest equipment or not. As technology improved and customers wanted more sophisticated services, the PSTN became much more complex to provide them—despite the limitations of the user interface.

In the 1970s and 1980s computers were becoming more powerful and widely available, and the Internet was conceived as a means to connect them [50]. Compared to the PSTN, two of its concepts were revolutionary:

	It replaced circuit switching with “packet switching,” in which packets from many sessions share physical links, and statistical multiplexing can ensure that physical resources are well-utilized.

	It would connect independent, autonomous networks with individual designs, tailored to their own physical media and customer requirements. There would be no centralized control, only voluntary cooperation for the sake of interoperation.

This thinking led to the defining “end-to-end principle” [23, 78], which creates a sharp divide between the Internet and the user machines that it serves (Figure 1.1). The principle states that the functions of the network should be minimized, so that basic service is efficient and no one pays for services that they don’t use. Many functions can be implemented in the endpoint user machines, because they are so easily programmable. Furthermore, key examples show that user endpoints are often the best place to provide functions such as reliability [78]. As an oft-mentioned test of minimality, network components should be gateways and routers without per-flow state, where a flow is a set of packets from one source to one destination.

[image:]
FIGURE 1.1. The user interface to a network, in the classic Internet architecture. The placement of the user interface reflects the view that user machines assume very little about the network, and the network assumes very little about the user machines. Throughout this book, red is used to point out the most important parts of figures.

The end-to-end principle was summarized by the slogan “smart edge, dumb core.” This slogan was widely emphasized in technical discussions because of its direct contrast with the PSTN, which had developed an elaborate and expensive core, yet still served the same old handsets.

1.2.2. The classic Internet architecture

The fundamental concepts of the Internet soon coalesced into the ubiquitous description we call the “classic” Internet architecture. The Internet is described as organized into layers, where “layer” has its usual meaning in engineering. A layer is a set of functions within a hierarchy of other function sets (layers), such that upper layers depend upon lower layers and know enough about them to use them, but lower layers do not know about or depend upon upper layers. In short, “layers” are modules in a dependency hierarchy.

The classic architecture is standardized in the IPv4 protocol suite. It has four layers above the physical layer, each providing a distinct set of functions (see Figure 1.2): a “link” layer providing best-effort local packet delivery over heterogeneous physical networks, a “network” layer providing best-effort global packet delivery across autonomous networks, a “transport” layer providing communication services such as reliable byte streams (TCP) and datagram service (UDP), and an “application” layer. According to this description a typical packet has four headers: Ethernet (or some other physical network), IP, TCP, and HTTP (or some other application protocol). The contemporaneous Open Systems Interconnection reference model [42] is similar: it has seven layers including the physical layer, with “session” and “presentation” layers between the transport and application layers.

[image:]
FIGURE 1.2. Layers in the classic Internet architecture on the left, with examples of corresponding packet headers on the right. Headers lower in the diagram come earlier in the actual packet.

So focused were the Internet founders on their five layers that most Internet terminology is based on them. A link-layer forwarder is a “switch,” while a network-layer forwarder is a “router”—and there are no other forwarders. Data is transmitted in units called “frames” (link layer), “packets” (network layer), “segments” or “datagrams” (transport layer), and “messages” (application layer).

The last major change in IPv4 was made in 1993 [34], which is just about the time when use of the World-Wide Web began its explosive growth. Simplicity [54] made the Internet a runaway success. Its open nature allowed competition between network providers in local markets, which further accelerated its development as a high-capacity, low-cost, global network.

1.2.3. Success and ossification

There is no need to dwell on the continued success of the Internet since 1993, as it is now part of everyone’s lives. By the 2000s the classic Internet architecture had matured, and ever since then experts have been pointing out its shortcomings, calling for evolutionary change, and decrying its “ossification” [40]. The prevailing belief about Internet evolution is that: (i) no network provider will change its IP network unless there is immediate economic benefit, (ii) IP network changes will have no economic benefit unless they are universally deployed, and therefore (iii) the Internet architecture is extremely difficult to change.

The most obvious form of potential evolution is the adoption of IPv6, which is the next major version of the Internet Protocol. IPv6 was conceived in the late 1990s, and its standardization was completed during the 2000s. The main difference between the two versions is that IPv6 has a much larger address space (128 bits versus 32 bits). This conferred relatively little economic benefit to network providers during the 2010s, which accounts for its slow deployment during that decade.1 Now that the available IPv4 address space is exhausted, new IP addresses are valuable, and the adoption of IPv6 is accelerating. Nevertheless, the adoption of IPv6 does not change the classic concepts as illustrated by Figures 1.1 and 1.2.

Networking researchers have long been aware of ossification and struggled against it. Most prominently, the “clean slate” movement [30] and the Future Internet Architectures program [31] advocated complete redesign of the Internet. However, the products of these efforts (e.g., [6, 86, 87, 99]) tended to be specialized in some way, and not compatible enough to merge into one unified design. One doesn’t hear much about “clean slates” anymore.

Nevertheless, there is still a regular succession of papers about Internet evolution, including [3, 10, 46, 68, 72]. These papers are in general agreement that the architecture of the Internet is the classic architecture presented above (with IP referring to IPv4 and/or IPv6), and that the architecture is not evolving. A key piece of evidence is the IP protocol suite (Figure 1.3). The hierarchy in the figure is the hierarchy of dependency, with exactly the same layers as in Figure 1.2, and the figure shows some of the protocols available in each layer. Several of these papers [3, 68] emphasize that the most important part of the protocol suite is its “narrow waist” at the transport and network layers. The narrow waist is in fact resistant to change, because so many other protocols and so much network infrastructure depend on it. To summarize the ossification argument, the architecture of the Internet is primarily IPv4 and/or IPv6, and in particular their network and transport protocols, which have changed only slightly over three decades.

[image:]
FIGURE 1.3. A sample from the Internet protocol suite.

1.2.4. Teaching about networking

Meanwhile, as the Internet has gained steadily in importance, academics have been teaching about networks. What goes into an undergraduate networking course? More or less, it is the classic Internet architecture, in a bottom-up or top-down order. As an electrical-engineering colleague of ours at Princeton once said, “I took a networking class in college. I fell asleep at the start of the semester with the IP header on the screen, and woke up at the end of the semester with the TCP header on the screen.”

The classic Internet architecture is good for teaching because it is both relevant and concrete. Nevertheless, its use gives rise to some common complaints. Teachers want to keep their courses up-to-date, but most of the new material is an exception to the classic Internet architecture, and does not fit the conceptual framework. Students might feel there is a seemingless endless flood of details (and acronyms!), all of apparently equal significance.2 And it is increasingly difficult to find enough room in the curriculum for everything that should be covered.

Graduate students usually learn about networking from reading research papers. We know from our own experience that, when approaching research in an unfamiliar area, it helps tremendously to have some context for it. The context helps us understand what fundamental problem the research is trying to solve, and why the problem exists in the first place. It also helps us ask the right questions while we read the paper. Sometimes context is missing because the reader is assumed to know it, but often it is missing because the classic Internet architecture provides no language in which to express it.

1.2.5. Networking research

Networking research has a very special asset: the largest computer system on the planet. The Internet interacts with almost every aspect of life, so everyone is a stakeholder [24] and its economic importance cannot be overestimated. It is completely decentralized, being assembled dynamically from parts without the benefit of mutual trust.

Yet networking research has its chronic problems, one of which is the lack of precise and consistent terminology. We have assigned to students a research paper in which there are four (among others) fields in packet headers, each corresponding to an important concept. In the paper, these four fields are referred to by two, three, four, and seven different terms respectively. Even worse, the set of terms used for one concept overlaps with the set of terms used for another concept!3 We point out this case not to complain about technical writing, but because it seems symptomatic of a more serious disease. In the current state of the field, almost any choice of terminology is vague, ambigous, or misleading in some way, and there is no consensus for writers and readers to rely on. Sometimes it seems as if, with no way to improve the situation, writers have simply given up.

Another chronic problem is the prevailing belief that the Internet is not evolving, and its stifling effect on research. (This explains why there has been so much interest in the research community on “clean slate” architectures.) Research that cannot be deployed easily within the classic Internet architecture gets poor reviews, discouraging investigation in all but a few approved directions.

In particular, we believe that there is far too little research interest in problems faced by software developers trying to build new Internet applications, if the problems are caused by entrenched Internet features. One of the founding principles of the Internet was enabling user innovation, and we fear it is being sacrificed because the belief in Internet ossification is too strong. For example, this book will point out simple changes that could have made IPv6 more flexible for application programmers, but may have been considered too radical, or not considered at all.

Among Internet applications, one of the most interesting is distributed systems with large replicated databases. Today the divide between distributed systems and networking has narrowed [75], but there is still little understanding of the common ground between them, and how it might be exploited to the benefit of both disciplines.

1.3. An alternative view of the Internet

In our alternative view, the Internet has a history of purposeful change rather than ossification, although the IP protocol suite has been relatively static.

1.3.1. Past evolution

Since the finalization of IPv4 in 1993, the Internet has met the following challenges not accommodated by the original architecture:

	Today, most networked devices are mobile.

	There has been an explosion of threats to security and privacy.

	While originally offering services that were different from the PSTN and broadcast networks, the Internet then won the contest for best overall global network. As a result, it has had to grow to support most of the world’s telecommunication infrastructure and entertainment distribution.

	Enterprises now need massive computing infrastructures, often supported by cloud computing.

	In a deregulated, competitive world, network providers must control costs by allocating resources dynamically, rather than provisioning networks with static resources for peak loads.

The magnitude of these challenges raises an obvious question: How has all this been possible without evolution of the Internet architecture? The answer, which we first reported in [96], is that the Internet architecture has evolved—it has been evolving continually since 1993, and it is evolving now.

Two features of the current Internet show evolution most clearly: middleboxes and tunnels. A middlebox is a network component, other than a forwarder, inserted in the paths of some packets. A tunnel is a network structure with entrance and exit points, both of which are network components. At the entrance point, some packets are encapsulated in extra network headers with the address of the exit as the destination; at the exit point, the packets are decapsulated to expose their original headers, and processed as usual. Middleboxes and tunnels are not independent, as one purpose of a tunnel is to ensure that packets pass through a middlebox at the exit point of the tunnel, before they travel to their final destinations.

Neither middleboxes nor tunnels are part of the classic Internet architecture, and in fact middleboxes are deprecated by the end-to-end principle, yet today they are everywhere. Many networks have approximately as many middleboxes as forwarders. The networks of Internet service providers have a tangle of tunnels at multiple levels. Middleboxes and tunnels can no longer be dismissed as rare or unimportant exceptions—to the unbiased eye, this is how the Internet works.

To make this point concretely, Figure 1.4 shows the headers of a typical packet in the AT&T backbone in 2013 [81]. The presence of extra headers means that there is tunneling. Instead of the expected four headers (Figure 1.2), the packet has eleven headers, giving clear evidence that the network architecture is not what it used to be. Another odd thing, inexplicable according to the classic Internet architecture, is that there are three network (IP) headers and two transport (TCP and UDP) headers.

[image:]
FIGURE 1.4. Headers of a typical packet in the AT&T backbone network of 2013, illustrating evolution of the Internet architecture.

The middleboxes and tunnels of today’s Internet are providing services such as mobility, security, cloud computing, and content distribution. These require new functions and network components that maintain per-flow state. Much of this is built on the IPv4 and/or IPv6 standard, because it is a good general-purpose network design.

The problem today is not the middleboxes and tunnels, but the fact that the architectural descriptions of the past give us no help in understanding or improving them. For this reason, our book introduces a new style or language for architectural description, henceforth called a “model,” to play this indispensable role. It will assign identity, structure, and meaning to all the middleboxes and tunnels, so that their purposes and coordination in this magnificent engineering artifact become apparent.

1.3.2. The current Internet

We now give a brief explanation of how the Internet produced the packet in Figure 1.4. Although the example is complex, it can be understood piece by piece. Implicitly, we are sneaking in concepts of the new architectural model to make the explanation modular and coherent. Please be aware that the body of this book will explain each piece of the new model slowly, carefully, and with many other examples. For now, even a sketchy understanding of this example is good enough!

1.3.2.1. END-TO-END COMMUNICATION

To begin with a description everyone agrees on, Figure 1.5 shows two user machines connected by the Internet. In each machine there is a stack of protocol implementations selected from the IP protocol suite as shown in Figure 1.3. In the machine on the left, an application program produces an HTTP message to be sent. Then the message passes downward through the stack. Each protocol implementation encapsulates the message in a protocol-specific header (and possibly footer), and may perform many other functions related to the purpose of the protocol.

[image:]
FIGURE 1.5. There is a protocol stack in each of two user machines connected by the Internet. Not shown: (i) protocols below IP, e.g., the Ethernet protocol; (ii) links and forwarders in the path between the user machines.

From the IP implementation module, the message leaves the user machine as a packet (or more than one, if the message is large). The packet travels along the dotted line, which represents a path of forwarders and links, until it is delivered to the user machine on the right. From there the packet travels upward through a matching protocol stack, each implementation module stripping off its own protocol-specific headers, and possibly performing other functions such as packet assembly, until it becomes a message that is delivered to the application. The dashed lines indicate that the TCP modules have direct (but virtual) communication with each other through TCP messages, and the HTTP modules have direct communication through HTTP messages. Messages travel between the two machines in both directions, of course, but only one direction is illustrated.

In the classic Internet architecture, additional communication services would be provided by adding extra protocols in the stack. These might include the services of the “session” and “presentation” layers of the Open Systems Interconnection reference model, which would be inserted between HTTP and TCP in Figure 1.5. As the example unfolds, we will show that this mechanism is insufficient to provide security, mobility, and many other services that have been added as the Internet has evolved.

1.3.2.2. ASSEMBLING NETWORKS WITH BRIDGING

In this example, the user machine on the right is a Web server in an enterprise network. For security, the enterprise network has an “intrusion-detection” middlebox that reconstructs the TCP byte stream (just as the destination endpoint does) and scans it for the signatures of known viruses and other security threats. The middlebox is shown in Figure 1.6. The figure is drawn as if the middlebox views HTTP messages as undifferentiated data in a TCP byte stream, but it could have HTTP-specific filtering as well.

[image:]
FIGURE 1.6. Bridged IP networks in the Internet. In the enterprise network, there is an intrusion-detection middlebox for security.

Figure 1.6 begins to show that the Internet contains many autonomous IP networks—each with its own administrative authority. Although most of these networks are still treated as one blob, the enterprise network has been separated from the others. This network is connected to at least one other IP network by bridging, which means that there are one or more links crossing the boundary between them. Bridging is a way to assemble autonomous networks into a larger network architecture.

Although the bridged IP networks all use the same general-purpose design, their different administrative authorities impose different goals and policies. For example, some of the many “other IP networks” included in the same box in Figure 1.6 are wide-area networks. The goal of routing in these networks is to find, for each packet destination, the most efficient path (e.g., short or uncongested) along which packets to that destination should be forwarded. In contrast, routing in the enterprise network need not be driven exclusively by path efficiency, because paths in the enterprise network are shorter. Security matters more, so one goal of enterprise routing is to forward packets through the necessary security middleboxes on the way to their destinations.

1.3.2.3. MORE SECURITY

To carry the theme of security further, in this example the user machine on the left belongs to an employee of the enterprise. As we can see from Figure 1.6, the employee machine is now connected to an IP network outside the enterprise. This is insecure because enterprise packets can be read or tampered with as they traverse public networks. To protect against this threat, packets traveling outside the enterprise network are encrypted.

Encryption is performed by the Encapsulating Security Payload (ESP) protocol (which belongs to the IPsec suite of IP security protocols), as shown in Figure 1.7. Here ESP is used in what is called “transport” mode, with ESP in the protocol stack below TCP. In the enterprise network, the employee’s packets are routed to a “virtual private network” (VPN) server, where the ESP module strips off the ESP header, decrypts the packet, and passes it back down to the IP module.

[image:]
FIGURE 1.7. Encryption provides further security.

This scheme is simple, but it introduces as many problems as it solves. First of all, the employee may be using the network in a coffee shop, airport, or other public place. The IP name in the source field of its packets will belong to the local network and be unknown to the enterprise network. In most enterprise networks, the gateway is a firewall that would drop the employee machine’s initial packet (a TCP SYN) as a security risk.

In addition to the firewall, there may be other problems:

	How does the enterprise network know that these particular packets should be routed through the VPN server?

	If the Web server is meant for use only by employees, it may not have a public IP name. (In this case it will have a name in the private IP namespace only, which is not meaningful or reachable from the public Internet.) How does the employee’s machine in a coffee shop or airport direct the packets to this particular enterprise machine?

	The VPN server will require the employee machine to present authenticating credentials, probably including a user name and password typed by the employee. But only ordinary TCP/IP packets leave the VPN server, so how does the intrusion detector or Web server find out the user name of the packet source, if it is needed for additional screening or customization based on the employee’s role?

As examples of why mere stacking of transport and application protocols is insufficient for today’s Internet, these problems are just the tip of the iceberg. And with this many problems in such a simple example, there should not be a separate, ad hoc solution for each one!

1.3.2.4. ASSEMBLING NETWORKS WITH LAYERING

Fortunately there is a straightforward way to solve all these problems, which is shown in Figure 1.8. In the figure we see that a “virtual private network” is really a network, enclosed in its own box.

[image:]
FIGURE 1.8. A virtual private network is layered on bridged IP networks. HTTP modules and gateways between the machines are still present but no longer shown.

Now two of the machines in the figure are participating in two networks each. Each machine has, for each network it participates in, a network member with a name in the namespace of the network. Members are pictured as ellipses, and their names are shown in Italics. Each member contains (at least conceptually4) the protocol stack it uses to participate in the network. Because the virtual private network is also an IP network, members at both levels have normal IP protocol stacks. Don’t worry about the gap between two members in the enterprise network, as it will be filled in later.

In Figure 1.8 the virtual private network is brought together with the bridged networks at the lower level by layering. Layering is another way, in addition to bridging, to assemble networks into a larger network architecture. When a network is layered on one or more bridged networks, it always means exactly the same thing—that a link in the upper network (overlay network) is virtual, and is implemented by a session in the lower networks (underlay). A session is simply a set of messages/packets that go together from the viewpoint of its endpoints. In this instance of layering, the ESP session between the employee machine and the VPN server is implementing the virtual link in the virtual private network between the same machines.

How does layering actually work? In the virtual private network, when a TCP message is being sent from E on the virtual link, it is of course encapsulated in an IP header, then sent. The sending is guided by layering data in the IP implementation module. This data tells the module to pass the message to M. In M the message is treated simply as ESP payload, encrypted, encapsulated in ESP and IP headers, and sent out on some link in M’s network. This way of using ESP is called “tunnel mode.” When the message/packet is delivered to S in the enterprise network, it is stripped of its IP and ESP headers, decrypted, and passed upward (again guided by layering data in the IP implementation) to the member of the virtual private network. In that member, it is handled exactly as if it were received on the virtual link.

Now that the left side of Figure 1.8 has two layered IP networks, packets crossing the public Internet have two IP headers with two source/destination pairs. Furthermore, a machine participating in two IP networks can have a different name in each, as the employee machine does. It can also have the same name in each, as the VPN server does. This increased flexibility solves the problems noted in §1.3.2.3, as follows:

	The packets’ outer IP header has the public IP name S as destination. The firewall accepts all packets with this destination and forwards them only to the VPN server. So the firewall knows what to do with these packets, and its actions are safe because the VPN server performs its own authentication of the packet source.

	Providing that the packets are authentic, the VPN server strips off their outer IP and ESP headers, revealing another IP header with destination W—the private name of the Web server. This name is meaningful now that the packets are within the scope of the private enterprise network, even though it was not meaningful in the public Internet. The destination name tells the enterprise network exactly where the packet should go.

	The source name E is a private name assigned to this particular employee within the enterprise network. Because the VPN server has made sure this employee machine has the right to use E, the intrusion detector and Web server can use it as a trustworthy indication of who is sending the packets.

Thinking architecturally, note that another name for a virtual link is “tunnel.” Note also that both the VPN server and intrusion detector are middleboxes.

1.3.2.5. MORE LAYERING

Next we reveal that the employee machine is a cellphone. So the cellphone’s lower-level connection to the Internet is actually through a 4G (4th Generation) mobile network, as shown in Figure 1.9. Although the label “4G” is correct for 2013, when the packet was observed in the AT&T backbone, everything in this example is true for 5G as well.

Adding this detail will give us more instances of layering. One of them is that the 4G network is layered on one or more radio networks, which are not IP networks and are not shown in the figure. The virtual link R connects M to a cell tower, and is implemented by a radio network. When the cellphone roams to another cell tower, it will be connected through a different virtual link to the new tower.

[image:]
FIGURE 1.9. The virtual private network is layered on a 4G mobile network. The 4G network is layered on IP networks and radio networks. Note that the virtual link R is implemented by the radio network, which is not shown.

Later in the book, mobility service in networks will be explained in detail. Meanwhile, Figure 1.9 is an oversimplification of one approach to mobility, but it is faithful enough for present purposes. For this kind of mobility, in this example, most of the necessary computation takes place in a data center, probably far from many of the radio networks. In the figure, a data-center machine is connected to the cell tower via virtual link P. The 4G network uses special routing to keep track of the current path to M and to forward its packets along that path, which begins with link P. Later, when the cellphone is connected by radio to a different cell tower, it will be reached from the data-center machine over a different virtual link rather than P. This kind of routing must be separate from ordinary Internet routing, because the frequency of updates is much greater than ordinary wide-area routing can handle.

As shown in Figure 1.9, the virtual link P is implemented on ordinary IP networks, statically connecting remote cell towers to centralized data centers. In the lowest-level IP networks, the protocol GTP5 performs the required encapsulation. The IP standard requires that GTP be encapsulated in a more common session protocol, which is usually UDP.

In Figure 1.8, along some part of their path, packets from the employee cellphone had two IP headers and two source/destination pairs, both of them necessary. In Figure 1.9, along the path between the cell tower and the data-center machine, packets have three IP headers and three source/destination pairs, all of them necessary. Now M is a mobile destination, which cannot be found in ordinary wide-area forwarding tables. The 4G network’s path to it is implemented by radio networks and largely static IP networks, where the new IP sources and destinations X and Y can get the packets across long distances between the data center and a cell tower.

1.3.2.6. ASSEMBLING NETWORKS WITH SUBDUCTION

Finally, all we have to do is fill in the two connectivity gaps at the lowest level in Figure 1.9. The gap between the VPN server and intrusion detector seems to involve some kind of interoperation between the virtual private network and the enterprise network, but what is it? Bridging assembles peer networks, but these two networks are not peers, because the virtual private network is layered (partly) on the enterprise network. Layering is for hierarchical assembly, not peer-to-peer assembly.

The answer is that we need a third way to assemble networks, called subduction, as shown in Figure 1.10. Subduction6 relies on shared (in a special sense) links, two of which fill the former gaps. Shared links can be virtual, but for purposes of explanation let’s assume these are physical. Thus there is only one physical link between the VPN server and intrusion detector, and there is only one physical link between the data-center machine and the unnamed machine to its right.

[image:]
FIGURE 1.10. Subduction assembles networks by means of shared links.

A shared link is always visualized as shown in Figure 1.10: it looks like two separate links sharing a common endpoint. One of these parts is a peer-to-peer link, which may be a bridging link between networks or a link internal to a network. The other part acts as a bridging link between an overlay network and an underlay network, although it is not actually a bridging link because it crosses levels of the hierarchy. At the common endpoint, the network member sees a single link that is normal in every way; if the link is two-way, it can both send and receive packets on the link.

On the other end of the shared link, there are endpoints in two different network members on the same machine. These two members must have a small amount of data to coordinate use of the link. If a packet is being received, there is a mechanism to decide whether it goes to the overlay or the underlay (never both). If a packet is being sent, there is a mechanism to decide whether the forwarding rules of the overlay or the underlay (never both) apply to it. The advantage of this abstraction is that, in almost every way, the behavior of subduction is simply the behavior of bridging plus the behavior of layering.

Subduction is extremely important in today’s Internet, because (as Figure 1.10 shows) different user machines participate in different networks, and there are discontinuities in the layering. Subduction is a major enabler of Internet innovation, because it smooths over these discontinuities, allowing new businesses and user associations to add network services as they please.

This brief explanation has now covered the three IP headers in Figure 1.4. If a packet monitor were placed along the path of a packet, where the vertical red line in Figure 1.10 crosses the path, it would see exactly these IP headers (the non-IP headers will be explained later in the book). Now the network labels in Figure 1.4 should make more sense, as we know that the three IP headers belong to three different IP networks, assembled with bridging, layering, and subduction. In each network’s header, there is a header for a forwarding protocol (here always IP) and one or more session protocols. The session protocol determines which packets go together from the viewpoint of the session endpoints. If the session is implementing a link in a higher-level network, the packets in the session are exactly those sent and received on the implemented link.

1.3.2.7. SUMMARY OF THE EXAMPLE

As we have pointed out before, virtual links are the same as tunnels. In this realistic example of today’s Internet, tunnels and middleboxes are plentiful. And the reality has strayed very far from anything encompassed by the classic Internet architecture.

Nevertheless, our presentation of the example has imposed structure on it, so we could give each tunnel and middlebox an identity, and explain the role it is playing. We can, for example, predict exactly which sources and destinations would be found in each IP header, wherever in the physical topology packets are sampled.

1.3.3. Future evolution

Despite the challenges that the Internet has evolved to meet since 1993, the world has not run out of challenges yet. For example:

	There is a well-known “digital divide” between developed and developing countries. Citizens of developing countries need new forms of Internet access that are lower in cost, more tolerant of delays and low speeds, and based on a wider range of resources.

	Providers of popular Internet services are large, wealthy companies. They want to gain more competitive advantage by investing in better Internet connectivity all the way from their servers to their users.

	Because of privacy concerns, most Internet traffic is now encrypted. Many security mechanisms developed over the last two decades rely on inspecting the payloads of packets for malware and the signatures of other threats; these mechanisms do not work on encrypted data.

	There is rapidly increasing automation of critical infrastructure, such as power grids. These are becoming more complex and also more integrated through the Internet. This enhanced connectivity must not be allowed to compromise their safety and reliability.

	In many areas of computing, there are increasing expectations that services essential to society should meet specification standards higher than the Internet Engineering Task Force’s “rough consensus and running code,” and that there should be some reason to believe their implementations satisfy their specifications. Verification of correctness properties, including some security properties, is now practical [13]. The new challenge is to apply these reasoning techniques at a higher level of abstraction, so that they relate directly to the experience of network users.

Our general impression is that this list exemplifies “tussle” in the sense of [24]: the need for different outcomes in different parts of the Internet ecosystem, because of the ongoing contention among parties with conflicting interests.

At the same time, people with intimate knowledge of network software agree that it is too complex. They believe that its complexity threatens reliability, and must be addressed as urgently as other well-known problems [19].

In summary, the challenge of future Internet evolution is to increase the Internet’s flexibility in function and performance while at the same time reducing its complexity and increasing its trustworthiness.

1.4. Purposes and a new approach

The primary purpose of this book is to describe the real Internet architecture, explaining how it evolved to its current state and how it continues to evolve. This is interesting in its own right, but—much more important—it may help guide evolution in the future. We will show that diversity of function and performance is well on its way, and probably needs no additional push. In contrast, we offer some new ideas for reducing complexity and increasing trustworthiness, without slowing the pace of innovation.

If nothing else, better descriptions of the Internet will improve teaching and research by providing a common framework for discussion. With a common framework of concepts and terminology, it will become much easier to analyze architectural alternatives and design trade-offs. It will also become easier to recognize alternatives and trade-offs that cross the conceptual boundary between networks and distributed systems.

An essential ingredient of this work is a new model of network architecture, to replace the still-ubiquitous classic model. The need is easy to comprehend. Based on our study of examples such as in §1.3.2, evidence for the evolution of Internet architecture is everywhere, and it is overwhelming. If this is so, why do so many people still think that the Internet’s architecture has not evolved? The answer is that the prevailing model of Internet architecture is misleading, and has prevented people from seeing the ongoing changes.

The new model has many characteristics, but two characteristics have been the basis and inspiration for everything else:

	The model is completely general. Without generality, it is hard to imagine how one could study evolution. Because the new model is general, the past and present Internet architectures are instances of it, as are all the prescriptive “future Internet architectures” that have been proposed, along with many other alternatives. The future Internet architecture—whatever it is—will also be an instance of this model.

	It is precise and formalizable. Without precision, we cannot be sure what we are talking about, but we can (almost) be sure that others will understand it differently. The best way to ensure precision is define the model formally, and use automated tools to see what consequences emerge from the definitions.

In the remainder of this chapter, §1.5 introduces the new model, compares it to the classic Internet architecture, and discusses its characteristics further. Finally, §1.6 gives a chapter-by-chapter overview of the book.

1.5. A new model of network architecture

1.5.1. Fundamental concepts

The new model of network architecture is based on these ideas:

	A network is a module of network architecture. For example, Figure 1.10 has four networks (although one of them is actually an abbreviation for many networks bridged together).

	A networking environment or network ecosystem contains many such network modules, each with its own purpose, geographical span, membership scope, and level of abstraction. Figure 1.10 shows a piece of the Internet ecosystem.

	The architecture of a network ecosystem is, in its primary description, a rich, flexible composition of networks. Networks are composed or assembled by means of three operators, bridging, layering, and subduction.

Because of these key ideas, the new model is called compositional network architecture. In this phrase and other uses, “network architecture” is being used in a common, general sense, as a substitute for the more precise “architecture of network ecosystems.”

In compositional network architecture, all networks have namespaces, members, links, routing, forwarding protocols such as IP, session protocols such as TCP, and directories. The list of basic components and functions is always the same, because each network is a self-contained microcosm of networking. Despite this commonality, the networks can have very different designs, as embodied by their particular namespaces, protocols, topologies, resource strategies, and other characteristics.

For example, in §1.3.2, we pointed out that IP routing in wide-area networks and in the enterprise network use different approaches because they have different goals—path efficiency without centralized control versus routing through middleboxes. Routing in the 4G mobile network is different from either, because its major goal is fast updating to track the movement of cellphones. And routing in the virtual private network is different from all three! A VPN is topologically very simple because there is a direct (virtual) link between each pair of members that need to communicate. So routing in a VPN is vestigial, meaning that it is so simple it is unnoticeable.

Network designs go far beyond IP. Other designs are meant to connect different types of machine for different purposes, so they make different performance assumptions and have different membership and authentication procedures. Some are meant to be local, and some can span the globe. Some are practical for only a few members, and some can handle millions. Some are meant to be static, and some can be used where components are highly dynamic. Some have concrete physical links, and some have abstract virtual links. Each network design has its own namespace, defined for its own purposes. Each network design has its own session protocols and services. And each network design has its own policies and control algorithms in accordance with its own assumptions and goals about such concerns as trust, security, performance, and economics.

In this book we will put on display a zoo of real network designs, including exotic beasts as well as domesticated animals. These will include networks in which members have no names, networks in which session protocols are executed by the infrastructure components rather than the user machines, and networks in which important routing and forwarding functions are performed by—literally—wild animals. Nevertheless, all these networks can be described with the same basic template, and all of them can be composed with IP networks within the Internet ecosystem.

Of the three composition operators on networks, the operator that shapes compositional network architecture most forcefully is layering. You have already seen multiple instances of layering in §1.3.2. Every instance of layering is the same: a link in the upper network (overlay) is being implemented by a session in the lower network or networks (underlays). Both links and sessions are communication channels, and all networks have them. Although most instances of layering in §1.3.2 are composing IP networks with other IP networks, because links and sessions are universal concepts, any kind of network can be layered on any other kind of network. This is the feature of compositional network architecture that makes networks composable like Lego blocks. We have found this definition of layering to be broadly applicable.7

For another perspective, let’s look at the user interface to a network, as shown in Figure 1.11. The user of a network is a distributed system needing communication services. The machines that host the distributed system must also host members of the network. A module of the distributed system sends a message by giving it to the network member through the operating system or hardware of the machine. Later, network members deliver the message to modules of the distributed system on one or more other machines. Note the contrast with Figure 1.1, in which user machines are not considered part of the network. Compositional network architecture acknowledges that sometimes user machines participate very actively in their networks.

[image:]
FIGURE 1.11. The user interface to a network in compositional network architecture.

Figure 1.11 also reveals the secret of how the Internet has evolved so much without major changes in the IP protocol suite. Look at the layering interface between networks, shown abstractly in Figure 1.13. The user interface to a network is exactly the same as the layering interface between networks! From the perspective of a network, it can be used by a distributed application system or by an overlay network, and the difference will be irrelevant. So new communication services and modes of usage can be added freely to the existing Internet, simply by layering new networks on top of it.

1.5.2. Brief comparison to the classic Internet architecture

The most easily misunderstood difference between compositional network architecture and the classic Internet architecture is the meaning of layering. As we have seen, the classic Internet architecture has a fixed number of layers. Each layer performs a specific, fixed set of functions. The relationship among layers, seen in both Figures 1.2 and 1.3, is simply one-way dependency, from top to bottom.

In the new model, networks composed by layering are also modules in a dependency hierarchy, but the resemblance ends there. Beyond the mere existence of a dependency hierarchy, there are differences in the nature of layers, the interfaces between layers, and the number of layers:

	In the classic architecture, a layer is simply a set of related functions. In the new model, a layer has a much more specific structure. It is a self-contained network, with all the basic mechanisms including a namespace, routing, forwarding, session protocols, and directories. As a consequence, layers/modules in the new model are different from layers in the classic model (see Figure 1.12). In particular, an IP network contains forwarders, links, routing, and forwarding, and the IP session protocols such as TCP and UDP.

	Because a layer in the classic architecture can implement any set of functions, each interface between layers must be specifically tailored to the functions above and below. But layers/modules in the new model all have a fundamental similarity as self-contained networks, so the layering interface between any two networks is the same. Again, this is the feature of compositional network architecture that makes networks composable like Lego blocks.

	In the classic architecture, there is a fixed set of layers. In the new model, the depth of layering in a network architecture is unconstrained.

Figure 1.12 shows how layers in the two architectures correspond. Similar functions are placed at the same level in different layer stacks. Application networks will be discussed in Chapter 3.

Another major difference between the two models concerns the possible roles that middleboxes can play. In Figure 1.13, for example, there is a middlebox in the overlay network. In this network, the middlebox is a trusted component of the infrastructure, while the two session endpoints are untrusted user members.

Now consider the role of the middlebox machine in the underlay networks. In these networks, its member is an ordinary untrusted user, while the forwarders are trusted infrastructure components. This is exactly the right model if the middlebox machine is owned and controlled by the administrative authority of the service network, but not owned or controlled by the administrative authority of its Internet service provider.

[image:]
FIGURE 1.12. Correspondence of layers in the two architectures. Similar functions have similar vertical placements.

[image:]
FIGURE 1.13. In compositional network architecture, machines hosting middleboxes can play different roles in different networks.

This example shows how middleboxes can be deployed wherever they are needed, even if they are not part of the infrastructure of basic Internet service. It illustrates the idea behind an updated version of the end-to-end principle, suitable for the Internet’s current and future architecture, which will be presented in Chapter 4. In the classic Internet architecture, this nuanced view of middleboxes cannot be represented.

1.5.3. Characteristics of the model

1.5.3.1. MORE ON ACCURACY AND PRECISION

According to Wikipedia,

In the fields of science and engineering, the accuracy of a measurement system is the degree of closeness of measurements of a quantity to that quantity’s true value. The precision of a measurement system, related to reproducibility and repeatability, is the degree to which repeated measurements under unchanged conditions show the same results.

Since a measurement of a network is a very simple model of it, our interpretation of “accuracy” and “precision” applies Wikipedia’s definition in an expansive sense, to “measuring” a network ecosystem by making a structural and functional model of it.

With this interpretation, a degree of precision predicts what will happen if you ask two people to describe some aspect of networking, large or small, in terms of the new model. A high degree of precision means that there is one right answer, which is not a matter of judgment or opinion, so that both people will give the same description. And if they do not, there is a definite reason why one answer is wrong. Precision is important because, without it, people cannot communicate reliably.

Compared to the prevailing standards in networking, compositional network architecture is very precise. For example, in [48] there is a discussion of whether the Address Resolution Protocol (ARP) belongs to the network layer or link layer of the classic Internet architecture. The authors are not able to come to a conclusion. In compositional network architecture, on the other hand, there is no ambiguity whatsoever: session protocols are part of each network, and ARP is an Ethernet session protocol. This fact is not dependent on the purpose of ARP, which is to create a partial, distributed directory mapping the IP namespace to the Ethernet namespace. It is also not dependent on the reason why directory-building is accomplished by an Ethernet protocol rather than an IP protocol, which is that the protocol relies on Ethernet broadcast service.

As for improved accuracy, there is no shortage of examples, such as the packet in Figure 1.4, which cannot be explained by the classic Internet architecture. This entire book is full of such examples, but they are most heavily concentrated in Chapter 4.

Accuracy and precision are also important because they make it possible to explain things in a way that a person can learn by heart and then compare constantly to his or her own observations. For example, in a section of their book [67] called “Perspective: Virtual networks all the way down,” Peterson and Davie write:

For almost as long as there have been packet-switched networks, there have been ideas about how to virtualize them, starting with virtual circuits. But what exactly does it mean to virtualize a network?… The hard part is grappling with the idea of virtual networks being nested (encapsulated) inside virtual networks, which is networking’s version of recursion.

Our model shows that virtualization of networks is network composition by layering, and it is completely straightforward, although extremely rich in its purposes and properties. Why has this straightforward operator not been defined earlier? Peterson and Davie have some sense of the right answer—they mention encapsulation, which is a big part of layering because messages from an overlay network are encapsulated in messages of the underlay network before they are transmitted. But the layers in the classic Internet architecture are not the right layers, because they don’t put network function (e.g., forwarding) and network usage (i.e., sessions) together, so they don’t have Lego-like interfaces. This is the piece of the puzzle that has been missing until now.

For another perspective on compositional network architecture, consider its contrast to Plutarch [25] and a recent update of it [18]. Plutarch is interesting because it has a concept of a “context” that is similar to our concept of a network (although there are important differences). For both concepts, internal diversity and external interoperation or composition are the norm. One major difference is that in Plutarch, composition of contexts is accomplished by means of interfaces called “interstitial functions,” which are not further defined—because the set of interstitial functions needed for each pair of networks is expected to be different. In the new model, on the other hand, interfaces between networks are formally defined and always the same except for data stored in tables.

Another major difference between the new model and Plutarch is that the focus in Plutarch is on communication between contexts to discover names, capabilities, and other control information. In other words, the focus is on the control plane. Compositional network architecture, on the other hand, formalizes the data plane: all the operational state of a network, including packet headers, forwarding tables, composition tables, session state, and packet processing that will be needed at runtime. This is sufficient to provide a view of network architecture that is both broad and deep.

In fact, we know from long experience that without precise description of the data plane, it can be almost impossible to know for sure what all the architectural options are, which options are actually feasible in a given situation, which pairs of options are really different and which are fundamentally the same, and what extended consequences an option might have. Our debates on these questions went on and on until we found the right data-plane model for each architectural option—and then the answers to the questions became clear.

1.5.3.2. ON TERMINOLOGY

The first step in achieving precision is to use clear, well-defined terminology. Terminology is often a contentious subject, because it is the foundation of abstraction. To name a concept, type of object, data structure, algorithm, or other abstraction is to say that it is worth talking about. We all instinctively know this is important and want to get it right. The terminology in this book is carefully chosen and in some ways unusual, so we are taking the time to explain exactly why we are defying convention in this way.

What to name?

The first decision in naming is to identify some abstraction as needing a name. Much of the trouble with the confusing paper in §1.2.4 would have been avoided if the authors had recognized how central the four header fields were to their presentation, and agreed early on what they would be called. The next decision, what to name it, will be covered below.

We have pointed out that every layer of the classic Internet architecture has its own terminology. Referring back to Figure 1.4, we do not want separate names for concepts in the three different types of network found in this figure (Ethernets, MPLS networks, and IP networks), let alone the six different layers, let alone all the other network designs and layer hierarchies that will be found in this book. Furthermore, compositional network architecture emphasizes the similarities among all networks. Ultimately, the only choice that makes sense is to introduce terms for all the parts, functions, mechanisms, etc., of a network, and to use the same terms for all networks.

What to name it?

Now that we have identified a precise concept worth naming, what name do we choose? This is difficult because every decent term has been used often, and may have many specific connotations and associations in people’s minds, often different for different people.

One possibility is to make up a completely new word, so that no one has any preconceptions about it. The trouble with this choice is that everyone has to learn a lot before they can understand anything we say. Also, language is a social signifier, and people who use a lot of artificial words no one else knows are signifying that they are a cult.

Instead of starting a cult, we prefer to use the common term that fits the concept best. This will mislead some people some of the time, which seems to be the lesser of the two evils. Readers of this book should be aware that terms introduced in Italics are given precise definitions and used consistently as defined throughout the book. These terms and their definitions can all be found in the Glossary.

1.5.3.3. MODULARITY, REPETITION, AND PATTERNS

The best way to expedite evolution of a complex system is modularity. In a modular architecture there are well-defined module interfaces, so that modules can easily be changed without changing their environments, and can easily be combined in new ways.

We have already mentioned that network software is too complex, and that its complexity threatens reliability. The only feasible way to make software simpler without losing functionality is to find repetition of function, and to replace many idiosyncratic implementations of the same function with a few well-engineered implementations. With modularity, repetition of functions is easier to find. The obvious differences among module instances make it possible to understand the requirements and trade-offs governing a particular instance of a function, and to select the right implementation for each module accordingly.

In compositional network architecture, modules are networks, and all networks have the same basic parts and functions, identified by the same names. This means that there is repetition, from network to network, of parts to manage and functions to carry out. Some functions, such as routing functions, have varied goals and diverse techniques. On the other end of the spectrum, however, layering and subduction are logically the same in all networks. Here there is real potential for taking advantage of a few well-engineered implementations, differing primarily on the number of parameters and the speed of the implementation technology (e.g., hardware versus software).

Another benefit of recognizing modularity and repetition is the discovery of patterns, where each pattern is a problem common to many different networks, along with a range of related solutions.8 A pattern may be suitable for some networks and not for others. We have ample evidence from writing surveys on mobility [94] and network security [98], as well as this book, that compositional network architecture facilitates recognition of patterns.

We believe that patterns have great potential for improving the teaching of networking. Patterns are far more meaningful than the details of isolated networks. They also supply the much-needed context of why and where, in a network ecosystem, a problem arises. Knowing that there are different solutions to the same problem, we want to know why there are different solutions, and this is where all the good stuff is. Clarifying the choices requires understanding the important considerations that drive engineers in their decision-making. For these same reasons, the knowledge embodied in patterns is memorable and reusable, when the student encounters something new.

Patterns can also help with the ever-expanding curriculum, because they are abstractions. Thus a pattern can be presented in expansive detail, or it can be presented concisely and more abstractly, where space in the curriculum is tight.

Just as patterns provide a framework for knowledge and teaching of networking, they can also help to consolidate and generalize research results. The range of solutions captured in a pattern can often be arranged in a “design space” with well-defined, possibly quantitative, dimensions. This would help in relating results from different experiments, and could ultimately systematize engineering trade-offs.

1.5.3.4. MORE ON GENERALITY AND FORMALITY

In many ways generality and formality would seem to be at odds with each other: formality means rigid definitions, so how can a formal model cover every possibility?

Compositional network architecture emphasizes network boundaries and interfaces, rather than network internals. So compositional network architecture does aim to be complete with respect to network-composition operators, including the data and packet processing necessary to implement composition. The model is much less complete for intra-network concerns, covering primarily topology, basic forwarding, and some session state. Examples in the book will show that these are modeled abstractly enough to describe a wide range of network designs.

The Recursive Network Architecture (RNA) [84] is based on a view of network architecture similar to ours, but, in contrast, it is embodied in a would-be-universal “metaprotocol.” So it is far less general than compositional network architecture. It is also much harder to use as a key to understanding the Internet, because functions performed by many different mechanisms in the Internet ecosystem must all be squeezed (in imagination) into the particular mechanisms of the RNA metaprotocol.

For both inter-network and intra-network aspects of behavior, the new model should usually be interpreted as necessary rather than sufficient. Many of the network mechanisms described as “control plane,” such as routing state, do not appear in the model at all. Consequently, a particular network design may contain many things not described by the formal model, and not constrained by it.

The exception implicit in “ usually interpreted as necessary” above is that in a particular network, a particular object can be vestigial. Formally, this often means that if it were present it would be making or representing a choice from a set with one or zero members. For example, even though the model states that a network header has a protocol-selection field, if the network has only one session protocol then the field is vestigial and not necessary.

For those who appreciate formality or are interested in verification, the formal model is available at compositionalnetarch.org. This is completely optional reading, as the body of this book defines each aspect of compositional network architecture rigorously, if not formally.

Formality enables automated reasoning, including code analysis, verification, and code generation. Automated reasoning can improve quality in a cost-effective manner, especially because it can be applied continually throughout the life cycle of hardware and software. Automated reasoning is the only way to provide guaranteed properties and a high level of quality assurance.

1.6. Organization of the book

This section provides a brief synopsis of the contents of each chapter. Note that Chapters 2 and 3 give a complete introductory overview of Internet basics. Their primary purpose is to describe these well-known facts using compositional network architecture, so that the new model is explained thoroughly. Secondarily, however, they give a general impression of what it might be like to teach networking using compositional network architecture.9

Chapter 2: Describing networks and services

Chapter 2 covers the internal structures, functions, and mechanisms of networks. These include network components, routing and forwarding, sessions and session protocols, and authority and management. The chapter covers each part in a general way that encompasses all network designs, and introduces terminology to establish common ground among all networks.

Chapter 2 also introduces the first of five forms of composition in compositional network architecture. It is called protocol embedding, and is used for composing network services inside networks.

As examples, Ethernet networks and IP networks are described in detail. A highlight of this chapter is a viewing of four other animals in the zoo—unusual network designs showing the malleability and descriptive power of the new model.

In addition, this chapter introduces terminology for description of network services. Although unlikely to be seen as a highlight by most readers, this is important because relating services to architecture is a recurring theme of the book.

Chapter 3: Composing networks and services

Chapter 3 introduces the first two composition operators on networks, bridging and layering. The discussion of bridging explains how the hierarchical bridging relation among IP networks is shaped equally by physical factors and business relationships. It also introduces another mechanism for service composition inside networks: compound sessions.

The primary examples of layering are the ubiquitous ones: layering IP networks on Ethernets, and layering the World-Wide Web (as a service-oriented network) on the IP networks of the Internet. In addition, we present five other examples of special-purpose networks and how they fit into the Internet ecosystem with layering. Two of these examples are well known in academia (Tor, cloud computing), while others are less studied but very widely used (MPLS networks, Virtual Local Area Networks, and performance-enhancing overlay networks as exemplified by the pioneering ideas of Resilient Overlay Networks). A highlight of this section is a detailed account of cloud computing and how it exploits the power of layering.

By the end of this chapter, you will have learned about two mechanisms for composing network services inside networks: protocol embedding and compound sessions. You will have also learned about two operators for composing networks, bridging and layering. There is one more composition operator to come in Chapter 4, called subduction. Together, these five concepts put the “compositional” in compositional network architecture.

Chapter 4: The real Internet architecture

Chapter 4 is the heart of the book, as it pulls the previous chapters together to describe today’s Internet in terms of compositional network architecture. To do this, it introduces the third network-composition operator, subduction, which combines bridging and layering as needed at the “bleeding edge” of Internet evolution. It is well worth understanding, because it is the enabler of innovation in the Internet.

We distinguish the lowest-level IP networks of the Internet, bridged together to achieve global reachability, as the base Internet. Roughly speaking, the base Internet is the same as the classic Internet of 1993. As the Internet ecosystem has evolved, many additional networks have been added, both above and below the base Internet, by means of layering and subduction. These additions are characterized by three patterns in this chapter: layering for routing scalability and flexibility, layering for sharing or “slicing” resources, and layering/subduction for enhancing network services. Here the example in §1.3.2 is presented in fuller detail, as an illustration of all the patterns that describe the real Internet architecture.

The chapter also discusses past and future Internet evolution, focusing on two major topics. First, past evolution has completely undermined the letter of the original end-to-end principle, but not its spirit. We show why this is true, and define a new version of the end-to-end principle, suitable for today’s Internet. Second, we discuss evolutionary trends affecting the base Internet, now and in the forseeable future.

Chapter 5: Patterns for enhanced network services

Chapter 5 is full of patterns, all of which elucidate the ways that network services can be added to basic network communication. Enhanced network services overcome obstacles to communication inherent in basic networking, such as network failures, security threats, endpoint limitations, bad side-effects of good features, and the challenge of finding the right network member with which to communicate.

The patterns in this chapter connect services to architecture, showing step-by-step why certain services require specific features of compositional network architecture. Major examples include mobility, inter-network multicast, aspects of security and privacy, and firewall traversal.

The highlight of this chapter is the repeated use of a very small set of mechanisms to extend the Internet ecosystem, incrementally, with a very large set of services. This is possible because each mechanism is defined with the greatest possible generality, and because each mechanism is a fundamental part of compositional network architecture. In other words, we are not answering the question, “What are all the ways to add each particular service?” Rather, we are answering the question, “How can all services be added, with good performance and efficiency, with the fewest different mechanisms?” The potential payoff is simpler, better-engineered implementations without loss of functionality.

Chapter 6: Ideas for a better Internet

Chapter 6 explores what it might mean to use the new model, not just descriptively, but also prescriptively—as a means of designing and building networks. We cover such diverse topics as Internet standards, implementation and optimization of compositional network architecture, and our thoughts about teaching courses on networking.

One highlight of this chapter is a presentation of three case studies, showing that the modularity of compositional network architecture can be very effective in providing detailed specifications of network properties, including user-level service properties, and in making their automatic verification scalable. The section makes a direct link between verification and security.

Another highlight of this chapter is a section bringing together ideas and examples from across the book, for the purpose of inspiring research on principles of layered architectures. These principles both support and take advantage of the new end-to-end principle. They also relate the basic characteristics of layering of networks to dynamic properties of networks and to network performance.

1.7. Bon voyage

In 2001, a report from a committee of the National Research Council [59] said:

The traditional Internet model pushes the intelligence to the edge, and calls for a simple data forwarding function in the core of the network. Does this continue to be the correct model? A number of ad hoc functions are appearing in the network, such as NAT boxes, firewalls, and content caches. There are devices that transform packets, and places where the network seems to operate as an overlay on itself (e.g., virtual private networks). Do these trends signal the need to rethink how function is located within the network? What aspects of modularity need to be emphasized in the design of functions: protocol layering, topological regions, or administrative regions? Is there a need for a more complex model for how applications should be assembled from components located in different parts of the network?

In this book, you will find answers to all of these questions.

We are eager to hear what you think of compositional network architecture—your questions, your comments, your complaints, and what it made you think about. We thank you very much for your attention, hope you have a good time reading, and don’t forget to write!

1. In effect, IPv4 and IPv6 are separate and co-existing Internets. Providers of IPv6 networks are usually also providers of IPv4 networks, sometimes even sharing the same machines between the networks.

2. Also known as a plethora of protocols, a heap of header formats, a big bunch of boxes, and a ton of tools [74].

3. And this is a good paper, referenced in this book.

4. There is no guarantee that the software and hardware in the machine will be organized exactly like this.

5. See Chapter 4 for the complete expansion of this acronym.

6. The origin of this word will be explained in Chapter 4.

7. In fact, we know of no exceptions to it. But there’s no way to prove the absence of unknown exceptions.

8. With thanks to Day’s seminal and inspiring book [26].

9. Because of the introductory material, this book might even be used, experimentally, as an introductory textbook for intellectually mature students.

2
Describing Networks and Services

2.1. Introduction

The basic module in a networking environment or network ecosystem is a network. A network can be understood as a self-contained system for providing communication services. All networks are based on the same principles, which will be explained in terms of components, distributed state, protocols, and other mechanisms. In §2.2 we use these basic concepts to define networks and to describe, at a very high level, how they work.

The world is full of networks. Although they all share the same basic concepts, they serve a wide variety of purposes, in many diverse contexts, which causes them to have many differences. To show how the description in §2.2 applies to the real world, this chapter presents as examples two ubiquitous types of network: Ethernets (§2.3) and Internet Protocol (IP) networks (§2.4). In §2.5 we will contrast these well-known general-purpose network designs with some specialized and unusual ones.

For some readers, the material in §2.2, §2.3, and §2.4 will be quite basic. It will, however, introduce our use of terminology, which establishes common ground among all networks and translates into a useful formal model. It also serves to show how compositional network architecture might be used to teach introductory networking. Please remember, for reference, that the Glossary contains all defined terms and where they were first defined.

In §2.6 we return to general concepts, not about how networks work internally (as in §2.2), but about their external properties. This section is a modest introduction to the goals of network design, and to the properties that engineers might need to measure, reason about, or even guarantee.

Although this chapter discusses networks in isolation, in the real world very few networks are isolated. In the Internet, and even in most networks not connected to the Internet, there is actually composition of networks as they are defined in this chapter. Composition is the means by which individual networks work together to provide network services. Chapter 3 will explain in detail how networks are composed, and how the properties of their services compose, using as examples the networks in this chapter.

2.2. Basic concepts

2.2.1. Network services

In this book, a machine is a computer or computerized device, all the way down to a smart sensor with wireless connectivity. A distributed system is a computer system with cooperating modules running on multiple machines.

A network service is a communication service used by the modules of a distributed system to communicate. A network is a distributed system with the purpose of providing network services to other distributed systems.1

A distributed system accesses the services of a network by means of its user interface, as shown in Figure 2.1. A message is a semantic unit of communication. A module of the distributed system sends the message by giving it to a module of the network through the operating system or hardware of the machine. A module of a network goes by the special name member, which will be explained more fully in the next subsection. Later, modules/members of the network on one or more other machines deliver the message to one or more modules of the distributed system. Eventually we will discuss how each message is part of a session, so each usage of the network is a session consisting of a set of messages that go together from the viewpoint of the users.

[image:]
FIGURE 2.1. The user interface to a network.

This chapter will use as examples four network services known as point-to-point, anycast, broadcast, and multicast services. Point-to-point service delivers a message to one uniquely named member of the network. All of anycast, broadcast, and multicast services deliver messages to a named group of members. Group communication services may seem arcane, but they are at the heart of networking, supporting activities from network administration to the World-Wide Web to streaming movies.

Anycast delivers each message to one member of the group, usually chosen to distribute the load of messages over all group members, or to choose the member closest to the sender. In contrast, broadcast and multicast deliver copies of each message to all members of the group. A broadcast group is defined structurally—it usually consists of all members of a network. A multicast group, on the other hand, is like a special-interest group that network members can join or leave at will. To employ any of these group services, senders use the group name as the message destination name.

Network services are very diverse; although this section uses mainly group services as examples, subsequent sections will introduce network services of many other kinds. Network services are also tricky to define formally, so we will not even attempt it until §2.6. In the meantime, you can just think of a service as something particular the network does for its users. For example, if you were advertising your network, hoping to get customers for it, you might not mention its point-to-point service, because it is taken for granted by your prospective customers. But you would advertise its anycast, broadcast, and multicast services, because these are useful features your customers might want and not all networks have.

2.2.2. Components of a network

The components of a network are its most tangible parts, with well-defined physical locations at all times (even if the physical location of a component is not known to all other components). All the subsequent concepts in §2.2 are functions, mechanisms, or objects implemented by hardware and software inside the network components.

2.2.2.1. MEMBERS

When a machine participates in a network, it has software and/or hardware dedicated to the task of network participation. The software and hardware work together as a functional module called a member of the network. As we saw in Chapter 1, each network member can contain a stack of protocol modules, each implementing one of the network’s protocols.

So if you think of your personal computer as a member of the Internet only, you would be thinking of all its networking software, as well as specialized hardware such as its network interface card, as its Internet member. Later you might realize that your computer is also part of a local-area network that uses the Ethernet protocols. Then you would know that it must have an Ethernet member as well as an Internet member. We use the term “member” of a network rather than “node” of a network because a machine usually has members of several networks, and we fear that “node” has too close an association with the machine itself.

The distinctions among members of different networks, and the distinction between network members and everything else on a machine, is conceptual. It is not the same as other partitions you might be aware of, such as hardware versus software, processor and memory hardware versus network interface card, or kernel versus user space. It also ignores the difference between implementation code and its reuse, for example when a machine participates in more than one IP network. We think about machines in this way simply because it is the best way to relate what goes on in them to network architecture. It allows us to show the independence of each network, and how the independent networks cooperate with each other. It also allows us to show how different networks are similar and how they are different.

2.2.2.2. NAMES

The members of a network have identifying strings that are names, drawn from a syntactic namespace. For example, member names in IP Version 4 networks are bit strings of length 32. Member names in Ethernet networks are bit strings of length 48. Member names in the World-Wide Web are variable-length alphanumeric strings such as “www.cs.princeton.edu.” Fixed-length bit strings are sometimes chosen as names because they are efficient for machine processing, while alphanumeric strings are sometimes chosen because they are human-readable and mnemonic.

Much networking literature distinguishes various types of member names such as addresses, identifiers, locations, node names, service names, endpoint names, user names, etc. There is no doubt that these names can refer to distinct concepts [9, 77], so why not use them in our model? The problem is that the correspondence between concepts and network designs is fluid and relative. For instance, when three IP networks are layered on top of one another as in Chapter 1, the IP standard states that all three have “IP addresses,” while the concepts associated with their members may match any of the concept names above, and a concept such as “identifier” might seem to fit networks at different levels of abstraction.

To avoid these complications, in compositional network architecture, each network simply has names for its members. In the design of each network type, the specific syntactic namespace is chosen to suit the expected purposes of the network. To understand any particular network in a network ecosystem, it is important to understand what concepts its member names represent.

In most networks, each member has a unique name drawn from the network namespace. This is so common and so useful that we assume it is always true. Naming is a multifaceted mechanism, however, which means that it can be used in many different ways within networks.

On the least-powerful end of the spectrum, there might be no need to direct packets to their proper destinations by putting member names in packets as their destinations (an example is coming in §2.5.4). In this case, unique names might be used only for management, and not even known across the network. Such names can be considered vestigial.

On the other end of the spectrum, members might have several names. There are group names distinct from unique names and assigned to anycast, broadcast, and multicast groups; more precisely, we say that the same group name is assigned to all the members of the group simultaneously. This means that a typical group member has two names by which it can be reached, its unique name and its group name. In other variations, a member may belong to several groups, or a member of a group may have only a group name and a vestigial name.

2.2.2.3. LINKS

Links are communication channels connecting the members of a network. Links transmit packets, which are the units of transmission on links. A message travels through a network in one or more packets.

Most physical links transmit packets through wires, optical fibers, radio waves, or microwaves. Physical links fall into two categories:

	A point-to-point link has two endpoints. If it is one-way, one endpoint sends and the other receives. If it is two-way, either endpoint can send packets to the other.

	A broadcast link connects a group of network members. Any endpoint (member of the group) can send packets, which are received by all other endpoints.

Wires and optical fibers make point-to-point links, and may transmit packets in one or both directions. Radio links are broadcast links. A bus (used in older Ethernets and cable networks) is a shared wire to which multiple network members are connected. A bus is also a broadcast link.

The good news is that we can talk about physical and virtual links in exactly the same way. For example, there are virtual point-to-point links and virtual broadcast links. Chapter 3 will also explain why we use names like “point-to-point” and “broadcast” to refer to both links and services.

A link need not have a network-wide identifier, but each member must have a way to distinguish locally among the links of which it is an endpoint. These are link identifiers, which take many forms, including software identifiers and hardware ports. In a radio network, each radio frequency is a separate broadcast link.2

Physical links and many virtual links are persistent, while some virtual links are transient, meaning that they exist only when they are needed.

2.2.2.4. NETWORK TOPOLOGY

A network’s topology describes the arrangement of its members and links. Figure 2.2 shows some common network topologies using point-to-point links.

[image:]
FIGURE 2.2. Common network topologies using point-to-point links. In each network, a longest packet path is shown in red.

In a “fully connected” network, there is a direct link between each pair of members. “Ring” networks, “tree” networks, and “hub-and-spoke” networks all provide connectivity between each pair of members with far fewer links. The disadvantage of these networks, compared to fully connected networks, is that packets must often traverse multi-link paths to reach their destinations. This is shown by the red paths in the figure.

The first four topologies follow recognized patterns. The last one is irregular, but has the virtue of extra paths between node pairs. Longer paths become valuable when links or members of shorter paths fail. Such irregular, redundant topologies are characteristic of wide-area networks, for example networks that connect cities.

2.2.2.5. NETWORK VIEWS

The figures in this book depict networks as graphs in standardized ways. Always:

	A member is a graph node, drawn as an oval or circle.

	A point-to-point link is a solid line. The line represents a two-way link unless otherwise noted. Note that a chain of members and links can be abbreviated as a dotted line replacing a point-to-point link.

	A point-to-point session is a dashed line. Like a link, it is assumed two-way unless otherwise noted.

Our graphs give two different views of networks, depending on their purpose. A topology view shows some or all of the topology of a single network. In this chapter, Figures 2.2, 2.5, 2.10, 2.14, and 2.16 are topology views. Note that a topology view shows network members, not machines, and that a member’s machine usually hosts members of other networks as well.

A session view focuses on a single instance of network service (a session), and usually shows only the members and links in the path of the session. In this chapter, only Figures 2.6 and 2.15 are session views.

The most important difference between session views and topology views is that session views (after this chapter) illustrate network composition and include more than one network. Session views in the book become much more interesting in subsequent chapters, where network composition is a major subject.

Some links and sessions are transient or dynamic rather than persistent or static, being set up only when they are needed, and torn down when no longer needed. For these links and sessions, arrowheads indicate the direction in which they are set up, pointing from the initiator endpoint to the acceptor endpoint (see §2.2.5.2).

2.2.3. Authority and management

A network has a single administrative authority, which is a person or organization (a legal person) that takes responsibility for it and exercises control over it. IP networks owned by different service providers may be technically indistinguishable and even connected to each other, but they are different networks because they have different administrative authorities.

It is convenient to partition the members of a network into infrastructure members controlled by the network’s administration and present for the purpose of providing services, and user members belonging to the network for the purpose of using the network’s services.

The most important part of taking responsibility for a network, of course, is providing resources for it. A network’s administration provides infrastructure members (which means providing compute cycles and memory on their machines) and some or all of the network links. It is also responsible for providing network software, possibly including software that runs in user members.

Administrative authority is an important abstraction, especially for security and resource costs, even though the authority is sometimes weak. For example, in a peer-to-peer network with virtual links, authority may consist only of a cooperative agreement among members. In such a network, all the members are considered infrastructure members.

As you will see in the remainder of this subsection, most of a network’s design is related to either routing and forwarding (§2.2.4), or sessions and session protocols (§2.2.5). There are a few functions needed to manage a network, however, that don’t fall exclusively into either of these big categories:

	Membership control. A network may have protocols for authorizing new members, assigning them names in the network, or configuring their member software.

	Network security. Most networks need security to protect their users and their own infrastructure from attacks. The main mechanism for network security is traffic filtering, which detects and discards malicious or suspicious packets. The general rule for designing network security mechanisms, which must be executed by some network members, is that infrastructure members are trusted and user members are not.

	Traffic and performance measurement. Many networks have mechanisms to monitor and measure their traffic, and also how well they perform in transporting this traffic. These measurements are used to detect attacks, provide dynamic feedback to the routing process, generate bills for customers, and other purposes.

2.2.4. Routing and forwarding

As shown in Figure 2.2, in any network that is not fully connected, some packets must traverse paths of two or more links to reach their destinations. A network member in the path that is neither the source nor the destination of the packet must forward the packet by receiving it on an incoming link and sending it out on the next link of its path. A forwarder is a network infrastructure member whose primary purpose is forwarding packets. In any network, routing is the mechanism that decides which paths packets should take through the network. Routing is also responsible for disseminating routing results among forwarders.

2.2.4.1. ROUTING

The foremost goal of routing is reachability. With some exceptions, we expect that every member of a network should be able to send packets to every other member. The second-most-important goal of routing is efficient allocation of resources. Routing allocates network paths (links and forwarders) to the packets that the network must transmit. Routing should allocate these resources so that performance as experienced by users is maximized, and cost to the network operator is minimized.

One necessary input to routing computations is some representation of the topology of the network. This representation must be dynamic, to account for intentional changes in the members and links. It must also include failure detection, as component failures and restorations change the topology in unexpected ways. Traffic and performance measurements are also useful inputs, if available.

In addition to achieving the two major goals, routing algorithms can be used to achieve some or all of these other goals:

	Resource fault-tolerance. Routing can pre-compute backup paths, so that forwarders can switch to them quickly to avoid failed regions and restore reachability to all destinations.

	Routing to groups. In some networks, routing is involved in providing anycast and multicast services (see §2.2.4.3).

	Middlebox insertion. A middlebox is a network member, neither user nor forwarder, placed in certain packet paths between endpoints. Infrastructure middleboxes perform functions that use more memory and computation time than is available in forwarders. These include management functions such as traffic filtering and measurement, and also user services such as interoperation and data compression/decompression. In some networks, routing directs packets through prescribed user middleboxes on the way to their destinations (which is sometimes called “service chaining”).

	Session affinity. Sessions are user-selected sets of messages, carried in sets of packets (see §2.2.5). Routing with session affinity ensures that all packets of a session travel on the same path.

Routing algorithms have a hard job to do: they must satisfy many goals simultaneously, often balancing competing interests, and often on a very large scale. Routing is the principal part of what people mean by a network’s “control plane.”

Most networks have distributed routing algorithms. In a distributed routing algorithm, forwarders use a control protocol called a routing protocol to exchange information with their nearest neighbors about network topology and known routes. As each forwarder receives updated information, it recomputes its own view of the network and its own local instructions about how to forward packets, encoded in the form of forwarding rules. Information exchange in a distributed routing algorithm is illustrated on the left of Figure 2.3.

More recently, the technology known as “software-defined networking” has made centralized routing a viable option. Centralized routing is enabled by the development of forwarders with open control interfaces allowing external agents to install forwarding rules [29]. In centralized routing, as shown on the right of Figure 2.3, forwarders send routing information to a centralized controller, the controller computes the forwarding rules for all forwarders, then sends updated rules to the forwarders that need them. Centralized routing allows more customization and fine-grained control in particular networks. For example, routing for middlebox insertion and session affinity is far more likely to be found in networks with centralized routing.

Forwarding rules at each forwarder are stored in its forwarding table. For high-speed forwarding, tables must be stored in fast, expensive memory, which makes table space another scarce resource. Infrequently, some of the forwarding state needed to forward a packet can even be stored in the packet itself.

[image:]
FIGURE 2.3. Information transmitted by routing protocols, in both distributed and centralized routing. The centralized controller is in red, while all other network members are forwarders.

Routing is a much-studied and well-understood aspect of networking, and there are already many good formal models. To give several examples, the earliest models were generalizations of distributed routing algorithms: Dijkstra’s algorithm generalizes to “link state” routing (see §2.4.4), while the Bellman-Ford algorithm generalizes to “distance vector” routing (see Chapter 3). Subsequent models define and analyze the optimization problems that these distributed algorithms are solving [38, 39]. Most recently, automated verification is being applied to check the routing configurations and forwarding tables of real networks [13].

2.2.4.2. FORWARDING

Every network has a forwarding protocol that defines a format for its packets, and governs how they are treated in forwarding. The first part of a packet is a network header, which has the same format for all packets in the network, and contains enough information for the network to forward and deliver the packet. The most common field in network headers is a destination field, containing the name of the network member (or group of members) that the packet is destined for. Another very common field is a source field, containing the name of the source of the packet. Network designs are so diverse, however, that there are networks with neither field in their network headers (see §2.5 for an example). §2.2.5 introduces some other fields commonly found in network headers. A network’s forwarding protocol can also require a network footer at the end of each packet.

The forwarding rules in a forwarding table always contain these two elements:

	A description of some packets, to which the rule applies. This description takes the form of a pattern matching some fields of a packet’s network header, and possibly the local identifier of the incoming link on which the packet arrived (or the pseudo-link self, for packets being sent by this member).

	An action for the member to take on a packet that matches the description. The packet may be received by this member. If the packet is to be forwarded (or sent, for packets originating at the member), then the action is the local identifier of an outgoing link (or set of links) on which the packet should be forwarded or sent. If the packet is being forwarded to a set of links, then a different replica of the packet is sent on each link. If the packet is not being received or forwarded, then the action is always to discard or “drop” it.

Because of these two parts, forwarding tables are often referred to as “match-action” tables.

In addition to pure forwarding, a forwarding protocol can mandate a number of other packet-processing functions. These functions usually refer to fields in network headers and footers, and sometimes modify these fields in the outgoing packet.

	Detection of transmission errors. Physical links can introduce bit errors. To detect them, a checksum (which is a hash function adapted to this purpose) is computed on some portion of the packet, and placed in the network header or footer of the packet before it is sent on the link. The packet receiver at the other end of the link recomputes the checksum and detects an error if the new checksum differs from the stored checksum. Damaged packets are usually dropped.

	Fragmentation and re-assembly. A network design might mandate a maximum packet size. If so, a message sent by a network user, with its network header and footer, might exceed the maximum packet size. The sender must fragment the message into smaller packets before sending, and the receiver must re-assemble the intended message using information in the packet headers. Also, if a forwarder receives a packet that fits on the incoming link but is too big for the designated outgoing link, the forwarder must fragment the packet further. Message fragmentation is illustrated in Figure 2.4.

	Routing fault-tolerance. The results of routing are not always perfect. Routing can fail to find a path for some packets, or can create forwarding loops. If there is no path available for a packet, or if a forwarder detects that a packet is traveling on a loop, the forwarder drops it. The forwarder might also send a message to a responsible network member, informing it of the problem.

It is important to note that some packet-processing functions must be performed by network members other than forwarders. Even if a member only sends and receives packets, and never forwards, it must at least do fragmentation and re-assembly if they are part of the forwarding protocol.

[image:]
FIGURE 2.4. Fragmentation of a message.

We now mention a few packet-processing functions that are not mandated by forwarding protocols, but rather extend the capabilities of routing and forwarding, or help to manage the network. For this reason, they are more likely to differ between instances of the same network design, and even between forwarders in the same network.

	Multi-path forwarding. In some cases, routing computes multiple paths for certain packet classes, with the intention of spreading packets in the class over the multiple paths according to some specified proportions or other criteria. Routing can plan for this spread, but it must be carried out by the forwarder placed where the paths diverge. For example, an easy way to halve a flow of packets is to select some header field with names in it, and look at the low-order bit of this field (which is considered to be quasi-random) in each packet. Based on this bit, forward the packet along one of two paths.

	Queuing. Busy forwarders must have queues for packets that have arrived but have not yet been forwarded. These queues are often associated with input links (where packets can be buffered before they are processed) or with output links (where processed packets can be buffered before they are transmitted). When a packet is “lost in transmission,” this usually means that the queue where a packet should have been buffered was full, and either the new packet or a packet already in the queue had to be discarded. Forwarders can perform fine-grained resource allocation by maintaining multiple queues for each output link, and serving the queues (choosing a packet to transmit on the link) in priority order or by giving each a turn.

	Traffic filtering. Some malicious, or at least suspicious, packets can be identified with static rules, for example rules associating certain names with certain roles in the network. As these rules are easy to implement, the bad packets can be filtered out by forwarders.

	Traffic and performance measurement. Forwarders can help measure network traffic and performance, provided that the local overhead due to measurement is limited. Forwarders might count packets, or add information to packets (such as timestamps) that will be read and processed by downstream forwarders. Forwarders might also replicate some packets as they are being forwarded, and send the replicas to other infrastructure members for analysis. A forwarder can only add information to packets if there are fields in network headers or footers for special purposes such as these.

To summarize, in compositional network architecture, forwarding is the name for a collection of ways that a network handles packets between when they are sent and when they are received. (Forwarding is also the principal part of what people mean by a network’s “data plane.”) These are the aspects of forwarding that have been formalized: (i) network headers, (ii) packet descriptions in forwarding rules, consisting of patterns matching incoming links and network headers, and (iii) actions in forwarding rules, instructing the forwarder to either drop the packet or forward it onto one or more links.

In many networks, in addition to all the functions in this subsection, forwarding also rewrites major fields of network headers such as the source and destination. This might seem strange, as the packet sender should be in control of these fields. Actually, packet rewriting is an implementation of network-composition operators, as presented in Chapters 3 and 4, and formalized in the formal model of compositional network architecture. This book argues that network composition should be recognized for what it is and implemented according to templates for composition operators, rather than being implemented by ad hoc packet rewriting.

2.2.4.3. IMPLEMENTING ANYCAST, BROADCAST, AND MULTICAST

Routing and forwarding can implement a network’s group services using whatever links are available. In fact, even point-to-point service might require a little extra packet processing, if it is implemented on top of broadcast links. For this service, whenever a member receives a packet not intended for it, it must drop the packet.

Anycast service is sometimes implemented with routing and forwarding. For example, in the network in Figure 2.5, A is the name of an anycast group, which has two members. For each forwarder in the network, routing has computed a path, for packets destined for A, to the closest member of the anycast group.

Routing and forwarding can also implement multicast service on a network of point-to-point links. This is illustrated in Figure 2.5 for a multicast group named M, in which the senders are the same as the receivers. The forwarding tables use replication to distribute packets to all members of the group (note that if a multicast sender is also a receiver, it does not receive its own packets). In effect, the routing algorithm for M has computed a forest of trees, one rooted at each member of M. Each tree distributes the root’s packets to all other members of M, without any possibility of forwarding loops.

[image:]
FIGURE 2.5. Forwarding tables to reach anycast group A and multicast group M. The incoming-link and destination columns of the tables are the pattern to be matched, and the outgoing-links column is the action. “*” is a pattern that matches any incoming link.

Implementing broadcast to all members of a network, over point-to-point links, is easier because it does not require a routing process to compute reachability trees for each group—forwarding can simply replicate an incoming packet and send replicas on all outgoing links. The trick, in this case, is to prevent replicas from looping around the network indefinitely. See §2.3.3 for a detailed example.

2.2.5. Sessions and session protocols

2.2.5.1. SESSION BASICS

A session is a single instance of use of a network. Equally, a session is a set of messages that go together, from the viewpoint of users. If the purpose of a session is to look something up in a directory, the session consists of one request message and one response message. If the purpose of a session is to transfer a file, the session usually consists of all the messages required to initialize, complete, and acknowledge the transfer. If the purpose of a session is a telephone call, the session includes all the messages carrying voice signals in both directions, and the session lasts as long as the call continues.

For network architecture, the important attributes of a session are its protocol, endpoints, and identification. In addition to merely grouping messages together, a session often provides one or more services. All of these attributes will be presented in the next few subsections.

Each session is governed by a session protocol, which is a set of rules for message formats, message sequencing, and the required behavior of session endpoints. A network can have multiple session protocols, each offering different services.

In general, the message format of each session protocol defines its own particular session headers and possibly session footers, as was shown in Figure 2.4. Between the header and footer of a message there is a payload, in whatever format the protocol dictates.

Shifting attention from the messages of a session to the packets in which they are transmitted, all packets must have session identification so that infrastructure members in the path of the session, as well as the endpoints of the session, can tell which session the packets belong to. Session identification must be part of the network header, and should be unique at all network members along the path. Session identification includes a session identifier, which is a distinguished field of the network header.

In some networks, the source and destination fields in network headers, and even other fields of network and session headers, are considered to be part of session identification—in addition to the session identifier. Source and destination names make it easy to ensure unique session identification, because the session identifier need only distinguish among sessions between the same two endpoints. On the other hand, use of names means that session identification has a different form for packets in the two directions of a two-way session. It is also limiting in other ways, which may not be apparent until Chapter 5. If session identification does not include names, and consists of the identifier alone, then the session-identifier field should be longer, and identifiers should be chosen randomly. This will make the probability of identifier collision very low.

Note that all network communication consists of messages belonging to sessions. This is true even if the session consists of only a single message, and the message is transmitted in only a single packet. Figure 2.6, a view of a session, is an updated version of Figure 2.1. It shows more detailed operations at the user interface to the session.

[image:]
FIGURE 2.6. A view of a simple session. Session identification identifies the session uniquely. It may consist solely of a session-identifier field in network headers, or may include this field plus other header fields such as source and destination.

All network communication consists of sessions even if the sessions are used by infrastructure members to control their network. Sessions of routing protocols are a good example. In the case of a routing protocol or other control protocol, there is no separate distributed system as in Figure 2.6, and the users of the protocol are the infrastructure members themselves.

2.2.5.2. SESSION ENDPOINTS AND SESSION STATE

While a network member is participating in a session, it is an endpoint of the session. An endpoint must have session state for the session, even if the state consists only of the session identification, and is used only to recognize which messages are part of the session. So a session has state distributed over its endpoints. Session state can be formed in two ways:

	A session can be created autonomously by its endpoints. In particular, an autonomous session is created at the instigation of a single member called its initiator, which must send at least one message to set up the distributed session state.

	A session’s state can be created by a mechanism outside the session itself, so the session protocol need not be concerned with it. For example, some long-lasting sessions are configured when the network itself is set up. Other sessions are set up by separate autonomous sessions; for example, in the Internet, some media sessions are set up by sessions of the Session Initiation Protocol (SIP). The media sessions themselves have protocols designed for real-time communication, which SIP is not.

Like links, sessions can be persistent (static) or transient (dynamic). Not surprisingly, autonomous sessions are always dynamic.

In setting up an autonomous, point-to-point, two-way session (which is the most common kind), the initiator sends a setup message to the intended far endpoint. The receiver of this message, the acceptor, responds to the setup message, either accepting or rejecting the session. The setup, accept, and subsequent messages carry session state from one endpoint to the other.

Anycast, broadcast, and multicast services can play a role in determining the endpoints of a session. For example, Figure 2.7 shows, at the top, the message sequence for setting up a point-to-point session as described in the last paragraph. In addition, there are two other methods of doing the same thing.

On the lower left, the setup message is sent to the name of an anycast group, so it is delivered to one group member. In an anycast service, “session affinity” is similar to session affinity in routing—it means that all packets destined for the group name, in the same session, are delivered to the same member of the group. If the anycast implementation has session affinity, the accept message can have the anycast group name as its source, and the initiator will send subsequent messages to the same name. If the anycast implementation does not have session affinity, and the acceptor has a unique name as well as a group name, it sends its unique name as the source of the accept message. Then the initiator will send subsequent messages to the unique name.

[image:]
FIGURE 2.7. Three ways to set up an autonomous, point-to-point, two-way session. The red arc on the lower right indicates replication, i.e., when the sender sends one message, it is replicated and delivered to a broadcast or multicast group.

On the lower right in Figure 2.7, the setup message is sent to the name of a broadcast (or multicast) group, and is delivered to all group members. In this method, for reasons having to do with the purpose of the session, only one receiver responds and accepts the session, while the others ignore it. This method is often used for request/response sessions, where the acceptor is the group member that has the answer to the initiator’s query. If so, it does not matter what name the acceptor uses for itself, because there will be no subsequent messages. Chapter 3 has examples of most of these session shapes and setup methods.

Infrastructure members in the paths of packets use session identification for many reasons. The network may have routing, multi-path forwarding, queuing in forwarders, packet filtering for security, or measurement that is sensitive to the sessions to which packets belong. Anycast service with session affinity, of course, also uses session identification.

Many of these session-sensitive network functions require network state that is allocated whenever a dynamic session is set up. For example, a “stateful firewall” is a typical infrastructure middlebox that allows two-way, point-to-point sessions with initiators inside its network and acceptors outside its network, but does not allow sessions initiated outside its network. When an external session is initiated from inside the network, the setup message passes through the firewall, and the firewall saves the session identification. When external packets enter the network, they also pass through the firewall, which drops them if they do not match the identification of an existing session.

Because session state takes up memory space in endpoints and network infrastructure, dynamic sessions should be torn down as well as set up, to recover their space. Session teardown can always be accomplished with the same kind of message handshake used to set the session up. The trouble is that network members or links can fail, and a teardown message might never be received by members that need it. For this reason, most network members time out sessions that appear to be inactive, recovering their space.

2.2.5.3. SESSION SERVICES

The minimal service, provided by all session protocols, is to identify a set of packets as belonging together. But session protocols can do many other things for their users. First we list some common general-purpose services provided by point-to-point session protocols. These services are expressed in the form of session properties, which means that they could be defined formally by predicates on the set of messages in a session, annotated with attributes such as their senders, receivers, ordering, and timing.

	Reliable delivery. A session has reliable delivery if all the data sent is delivered. “The data sent” is necessarily protocol-dependent. For example, “the data sent” can be the payloads of a stream of protocol messages. If packets carrying parts of this data stream are lost in transmission, then one or both endpoints must detect their loss and arrange for retransmission of the lost data in duplicate messages that do not add to the length of “the data sent.” Sometimes this will cause the receiver to receive the same data twice (when the original data arrives late, after duplicate data has already been requested or transmitted), so the mechanism for reliable delivery should also remove duplicate data.

	Ordered delivery. A session has ordered delivery if the data is sent as a sequence of items, and the items are delivered in the same order they were sent. “The data sequence” is necessarily protocol-dependent, and can consist of messages or data items. Packets can arrive at a destination out-of-order because they traveled through the network along different paths, and one traveled faster than the other. Packets can also arrive out-of-order because of loss and retransmission. Either way, the mechanism for ordered delivery must re-order the data or messages they carry, before it is delivered.

	Mobility. During a long-lasting session, a mobile endpoint can move through space and change its attachment to the network. A session has mobility if it persists throughout these changes.

	Persistence. A session has persistence if it lasts as long as its endpoints want it to. Sessions can be disrupted because of failures or timeouts in the network path between the endpoints, but the protocol can have mechanisms to automatically restart or refresh the session.

	Data integrity. A session has data integrity if no agent other than an endpoint can insert packets into the session, or modify or replay session packets.

	Data confidentiality. A session has data confidentiality if no agent other than an endpoint can read packets in the session. Data confidentiality is achieved with encryption.

	Endpoint authentication. A session has endpoint authentication if one endpoint can be certain of another endpoint’s identity.

Other common protocol services are more difficult to define as properties, because they can be provided in many ways, and so require considerable elaboration to be stated precisely. These services include:

	Performance enhancement. Session protocols can sometimes enhance network performance, according to some measures. For example, they can increase the bandwidth allotted to one session by partitioning its packets and sending each partition on a different path.

	Congestion control. Endpoints can cooperate with a network to reduce congestion and maintain moderate performance for everyone when the network is very busy. To do this, endpoints detect congestion and voluntarily slow down their rate of transmission.

	Middlebox insertion. Just as routing can enable a network to insert middleboxes into packet paths, session protocols can enable endpoints to insert middleboxes into sessions.

	Synchronization. Interactive exchange of messages can be used to synchronize the operations of remote endpoints, most notably in clock-synchronization protocols.

2.2.5.4. HEADER FORMATS AND PROTOCOL EMBEDDING

The following fields are present in most packets. If a field is not present, there is usually a specific reason why the field is vestigial in that network design.

	Source, destination. Names the member or group where the packet originated or should be delivered, respectively.

	Session protocol. The session-protocol field selects the session protocol of the message being carried in the packet.

	Session identifier. Identifies or helps to identify the session of the message being carried in the packet.

	Overlay. Roughly speaking, the overlay field indicates the distributed system that is using the network, as in Figure 2.1. It will be explained in much more detail in Chapter 3.

These fields can, of course, be divided into subfields.

Although the most prominent forms of composition in this book are compositions of networks, there are also forms of composition that operate inside networks. One of these is protocol embedding. As we have seen, a session protocol can provide services. Protocol embedding allows multiple session protocols to be used for the same session in the same network, so that the session can benefit from the services of all of them. Because embedding is directional, we refer to any two protocols in an embedding relationship as the inner and outer protocols, respective to each other. The effect of protocol embedding on message formats is that messages of the inner protocol are payloads in the messages of the outer protocol. This allows the inner protocol to depend on the outer protocol, which means that the design of the inner protocol can take advantage of the services of the outer protocol.

Whenever there is protocol embedding, and no fragmentation, a packet contains more than one session header. Much later, in Chapter 5, we will show that sometimes each session header needs its own session identifier. With this in mind, the most general packet format for a network is shown in Figure 2.8.

[image:]
FIGURE 2.8. The most general format, for a packet containing whole messages (no fragmentation). The shaded area is a message. Both network header and session header can have other fields specific to the design of the network or protocol.

To understand Figure 2.8, first consider the case with no protocol embedding (so ignore all mentions of Q). The “payload descriptor” in the session header is actually the overlay field, and the payload is the data being carried for the overlay.

If there is embedding of a protocol Q in protocol P, on the other hand, then the payload in Figure 2.8 is an entire message of Q, including its session identifier (distinct from that of the P message), payload descriptor (the overlay), and its payload (overlay data). In this case the message of P, visible in the figure, gives the next protocol Q as the payload descriptor.

This format extends to any number of embedded session protocols. Regardless of the depth of embedding, the overlay field of the whole packet is the payload descriptor of the inner session header. Regardless of the depth of embedding, each session header has its own session identifier. Nevertheless, the outer session identifier is the one that network components will see, and it must be present in every packet (fragment) of every message, so it must be regarded as belonging to the session header and the network header.

This packet format requires that the session-identifier field in session headers be standardized for all session protocols of the network, because if any protocol plays the role of an outer protocol, this field of its session header will also be part of the network header.

When there is protocol embedding, and the payload in Figure 2.8 is actually a message of an embedded protocol, it would be normal to say that the message of the inner protocol is “encapsulated” in the message of the outer protocol. This is fine, but be aware that encapsulation is also part of layering, so the mere fact of encapsulation does not determine whether the composition operator is layering or protocol embedding.

2.3. Example: Ethernets

Most wired devices are physically connected to networks through Ethernets. IEEE3 802 refers to a large family of standards for small and medium-sized networks; the standard for Ethernets is IEEE 802.3.

2.3.1. Physical links

In the first Ethernets, all the participating machines were connected to a bus, i.e., a shared cable. Because the communication medium was shared, all the machines competed to send packets over it, and packets sent about the same time could collide. Although there are many mechanisms for managing collisions, modern Ethernets avoid the problem altogether. Today each user machine in an Ethernet connects through a dedicated wire to a forwarder called a “switch,” and pairs of forwarders are also connected to each other through dedicated wires.

Figure 2.9 shows the format of an Ethernet packet. The “preamble” is a fixed bit sequence, present so receivers can detect the presence of a packet and synchronize with its waveform. The logical part of a packet is called a “frame.” It begins with another fixed bit sequence to show where the frame begins. Then there are the names of the packet destination and source. The “Ethertype” field is either a session-protocol field or an overlay field (see §2.3.4). The packet can carry up to 1500 bytes of payload. The “frame check sequence” is a network footer carrying a “cyclic redundancy check” hash for detection of transmission errors. This hash can detect most errors, including errors in individual bits and bursts of errors in consecutive sequences of 32 bits or fewer.

[image:]
FIGURE 2.9. Ethernet packet format. Field lengths are shown in bytes.

After the packet, senders must remain silent for the transmission time of 12 bytes, which is the “inter-packet gap.” The gap ensures that receivers know the packet has ended. Physical packets must be limited in size because the longer the packet, the less likely it can be transmitted without some error, which will cause the packet to be discarded. So the packet-length limit results from a trade-off between the overhead of header and inter-packet gap on each packet (which would justify longer packets), and the probability of errors in long packets. Even with the 1500-byte payload limit, Ethernet packets can use up to 97% of a channel’s capacity for transmitting data. Ethernet links to individual machines tend to have data rates from 100 Mbps (one hundred million bits per second) to 10 Gbps (ten billion bits per second), while Ethernet links in data centers have data rates from 10 Gbps to 100 Gbps, and are becoming faster all the time.

2.3.2. Ethernet members and names

Names of Ethernet members are 48-bit strings called “Media Access Control (MAC) addresses.” For human consumption, they are written like 00:0D:83:B1:C0:8E, with each byte being written as two hexadecimal digits. The most important thing about the MAC address of a machine is that it is globally unique. Each device manufacturer has its own 24-bit prefixes; when it manufactures a device, it gives the device a unique name beginning with one of its prefixes and ending with any number within a 24-bit range.

Ethernets are relatively small “local area” networks. They are found in homes, office buildings, factories, campuses, and towns. The administrative authority of these networks is the homeowner, organization, or government, respectively. The member count of an Ethernet is often limited to about a thousand, because of the protocols used (see below), but the number can vary widely because Ethernets are used in many different environments.

In principle an Ethernet is “plug-and-play,” meaning that a machine can join the network simply by plugging into it; this is possible because the machine already has its own unique Ethernet member name. In practice there may be security measures in place, so the machine may require approval from the network’s administrative authority.

The namespace of a particular Ethernet is called “flat” because it has no structure useful for network functions. For all practical purposes, the names of the members of an Ethernet are a thousand numbers drawn randomly from a very large set.

2.3.3. Ethernet routing and forwarding

In the forwarding table of an Ethernet forwarder, each rule is simply a (name, port) pair, where the name is matched with the destination field of an incoming packet, and the port is the hardware port where the wire for the outgoing link is plugged in. Just as machines need no configuration to join the Ethernet, forwarders need no configuration to start forwarding. Rather, each forwarder’s table is populated lazily by a routing algorithm called “MAC learning.”

Upon receiving a packet with a source name that is not in its forwarding table, a forwarder adds to its table the source name and the port from which the packet was received. Thus, whenever the forwarder receives a packet with that name as destination, the new packet is forwarded where the old packet came from.

Upon receiving a packet not destined for itself, a forwarder looks for the destination name in its forwarding table. If it finds a matching entry, it forwards the packet on the designated link. If it does not find an entry, it replicates the packet and forwards it onto every link except the one on which the packet was received (see Figure 2.10). This part of Ethernet routing is called “flooding,” because it floods the network with packet replicas to find a previously unknown destination. Eventually, one of the replicas will reach the destination. If the destination replies to the source, the destination’s packet will return along the reverse path of the source’s packet, causing its name to enter the forwarding table of every forwarder along the way.

[image:]
FIGURE 2.10. Routing and forwarding in an Ethernet (only links of the spanning tree are shown). Red arrows show replication and forwarding of a packet with source name A and destination name B when both have just joined the network and are unknown to forwarders. At each forwarder the table entry for A, after it has seen the packet, is shown.

Entries in a forwarding table have an expiration timer, so they will be discarded if they have not been recently refreshed by MAC learning. This makes it possible for a member machine to move physically within the scope of the Ethernet. After it moves, its table entry at a forwarder will change eventually, either because the forwarder receives a packet from the machine at its new location, or because its table entry times out, the forwarder receives a packet destined for the machine, and the forwarder floods to find its new location. In the meantime, some forwarders will forward packets based on table entries that are no longer correct.

In addition, a forwarder could maintain state indicating how long it has been since a table entry has been used to forward a packet. Then if the table becomes full and the forwarder needs space for new entries, it can discard the least recently used entries.

Flooding has the obvious disadvantage of creating extra traffic in the network. Even worse, if any of the links and forwarders form a loop, a packet could travel around the loop forever! To solve this problem, the forwarders use a control protocol to compute a spanning tree, which is a tree whose nodes include every member. Then they use only links in the spanning tree for forwarding, as shown in Figure 2.10, which guarantees there will be no loops in the network.

An Ethernet usually has additional physical links that are not part of the tree. These extra links become useful when tree links fail, because the spanning tree will be recomputed and the unused links may become part of the new spanning tree.

In summary, an Ethernet forwarder must populate its forwarding table one member at a time, often with the help of flooding. It also uses its own broadcast service (see below) for various control purposes. These protocols create traffic that is overhead rather than work on behalf of users, and the number of packets grows as the square of the number of members. For these reasons, Ethernets must be limited in size.

2.3.4. Ethernet services

Ethernets do not allow protocol embedding, so there is no need for a payload descriptor that names the next protocol. In Ethernet packets, the Ethertype field combines the session-protocol and payload-descriptor fields of the general packet format, where the payload descriptor can only be an overlay. This works because almost all Ethernet session protocols are either control protocols, or protocols that Ethernet members are using for their own purposes, in which case no overlay field is necessary. When an Ethernet packet is carrying a payload for some overlay, so an overlay field is needed, there is only one possible session protocol. In this case the Ethertype field names the type of overlay, usually IPv4 or IPv6. The default session protocol is vestigial, and each message is a separate session. There is also no difference between a packet and a message.

Ethernets do provide broadcast and multicast service. To use broadcast service, a member sends the packet to name FF:FF:FF:FF:FF:FF. To use multicast service, a member sends the packet to the name of a multicast group. All Ethernet names whose eighth bit is 1 are reserved for multicast groups (because the eighth bit just happens to be the first bit transmitted). Not surprisingly, broadcast and multicast services are implemented with the flooding mechanism.

Ethernet control protocols include the protocol for computing the spanning tree, and also the Address Resolution Protocol (ARP), which will be discussed in Chapter 3. Ethernet control protocols use Ethernet broadcast service to do their work.

2.4. Example: Internet Protocol networks

Today’s Internet Protocol (IP) networks may use either the Version 4 (IPv4) or Version 6 (IPv6) protocols. Because IPv4 networks are still more common, in this book plain “IP” means IPv4. IP networks are designed to solve the problems of very large-scale networking, and to operate in a federated environment in which no network has control over other networks.

2.4.1. Hierarchical namespace

IP names, called “IP addresses,” have 32 bits. They are usually written in “dotted-decimal” notation, with one decimal number for each of the four bytes, such as 200.45.186.3.

The most important characteristic of the IP namespace is that names are assigned in blocks, and blocks are hierarchical. For example, a subnet with up to 256 members can be assigned the block or set of names from 200.45.186.0 to 200.45.186.255. This block is written in “prefix notation” as 200.45.186.0/24, meaning the set of consecutive names whose first 24 bits are the same, starting with 200.45.186.0. Originally only /8, /16, and /24 subnets were allowed. Since the last major change to the IP standard in 1993 [34], IP names have been “classless,” meaning that prefixes with any number of bits are allowed.

IP’s hierarchical namespace would be easy to understand if IP names were written in binary. Say that we have a block written b12020∕12, where b12 is a string of 12 bits, and 020 is a string of 20 zeros. This block can be divided into two blocks

b120019∕13 and

b121019∕13.

This works for any length of b from 0 to 31. The use of dotted-decimal notation to write IP names is very convenient, but it makes the block hierarchy look tricky. Figure 2.11 shows some block decompositions in dotted-decimal.

[image:]
FIGURE 2.11. Hierarchical decomposition of some IP name blocks, written in dotted-decimal notation. Every IP name in the figure begins with the same two decimal numbers, e.g., 200.45.

The hierarchical subdivision of IP names into blocks is used to provide administrative boundaries (different network operators get different blocks to assign as they like) and geographical or topological boundaries (different network paths lead to different blocks). This is how the Internet operates at global scale. Network operators have control of their own namespaces, without fear of naming conflicts. Forwarding tables in wide-area networks are of manageable size, even though each forwarder should have a rule for every name, because each forwarding rule applies to a large block of names—aggregated together for purposes of forwarding.

2.4.2. IP members and links

IP links are always point-to-point and virtual; Chapter 3 will explain how they are implemented by means of layering. Because there is a variety of IP networks, with different purposes, IP networks have many different topologies.

Members of IP networks are conventionally partitioned into “hosts” (user members) and “routers” (infrastructure members acting as forwarders). When people use these words they are usually referring to whole machines, but in fact the machines on which these members run are always running members of other networks as well.

An IP forwarder is usually assigned many IP names. It has a unique name that it uses for general communication.4 In addition, it has a unique IP name for each link of which it is an endpoint. So the link endpoints at a forwarder are sometimes called “ports” (identified by numbers corresponding to hardware on the machine) and sometimes called “interfaces” (identified by IP names). It is unusual in networks for link endpoints to be given member-like names, but in IP networks it has been found useful for various management functions including configuration, failure diagnosis, and monitoring. For example, forwarders might send periodic “heartbeat” messages on their outgoing links so that the forwarders at the far ends know that the sending forwarders and links are working. If a heartbeat message is destined for the far forwarder’s general name, it might travel on one of several paths, and the recipient might learn nothing about the designated link. If the message is destined for the outgoing link’s remote interface name, on the other hand, it must travel on the designated link—so its absence will be meaningful.

User members can be given their names at configuration time, but most commonly, a new user member gets an IP name through the Dynamic Host Configuration Protocol (DHCP). Through this protocol, a new member gets an offer of an IP name in its local subnet, along with a lease time, which is the amount of time for which the name will be valid. After the member accepts an offer and receives a confirmation, it has a name in the block of its subnet. Chapter 3 will give more details on DHCP, particularly how an IP member can communicate with a DHCP server before it has an IP name.

Members of an enterprise subnet in an office building may keep their IP names for years. In constrast, consider an IP subnet in a coffee shop, where customers come and go all the time. Their mobile devices will receive IP names with short leases (which can, of course, be renewed for tall lattes). When the customer leaves, the IP name will be given to another customer’s device, and the original customer’s device will get another IP name at its next stop. This name-changing is necessary because the names are location-dependent, but it does make mobile connections difficult to implement in the Internet, as will be discussed in Chapter 5.

2.4.3. IP forwarding

Figure 2.12 shows the format of the IP network header. The version field refers to the version of the Internet Protocol, here 4. There is a field for the header length because the header can contain up to 40 bytes of optional information. The type-of-service bits can be used to differentiate classes of service, so that an IP network can handle them differently, perhaps giving some classes preferential queuing in forwarders. The “identifier,” “flags,” and “fragmentation offset” fields are all used for packet fragmentation.

The time-to-live field is used to detect routing errors. It is a counter, initialized by the packet’s sender and decremented by every forwarder that the packet encounters. When the counter becomes zero this is taken as a signal that the packet is looping, and the packet is dropped. The “traceroute” program makes use of this behavior by sending a sequence of packets to the same destination with times-to-live 1, 2, 3, etc. When each packet is dropped by a forwarder, the forwarder sends back a notification message with its own name, from which the sender can reconstruct the entire route of its packets to their destination.

The header checksum is used to detect transmission errors in the header. It is computed by dividing the header into 16-bit words and summing them modulo 16. If a received header’s checksum does not match the checksum in the packet header, then the packet is dropped. Clearly the checksum must be checked and recomputed by every forwarder, because the forwarder is changing (at least) the time-to-live field.

[image:]
FIGURE 2.12. Fields of an IPv4 network header, arranged in 32-bit words. Unless otherwise noted, field lengths are in bytes.

The options field is not commonly used. One of its originally intended uses was to carry routing state, i.e., a path for the packet to take, but few forwarders obey such instructions. One possible use is measurement; for example, a forwarder that has processed a packet can record its name and a timestamp in this field, so that a downstream forwarder can measure the elapsed time since the upstream forwarder had the packet. In addition to the packet-processing functions already mentioned, IP forwarding frequently includes multi-path forwarding, multicast forwarding, and traffic filtering.

It is important to note that IP networks are autonomous and can declare anything their administration wants to be packet non grata, although their operators usually follow common practices. So it is not uncommon for IP networks to drop packets with “unsupported” versions, types of service, or options.

2.4.4. IP routing

IP routing is often performed by the forwarders themselves, running a distributed routing algorithm or protocol. In this section we will summarize the routing protocol Open Shortest Path First (OSPF); another important routing protocol will be presented in Chapter 3.

In OSPF, every forwarder must have a complete, up-to-date representation of the entire network graph. To achieve this, each forwarder sends an advertisement to each of its neighbor forwarders, containing its own name, all its point-to-point links, their far endpoints, and their costs (see below). On receiving such a message, a forwarder (i) acknowledges it, (ii) adds the information to its own graph, and (iii) forwards the same advertisement to all outgoing links except the one it came in on. If a forwarder’s message is not acknowledged, the forwarder retransmits it. If a forwarder discovers that a link has failed or been restored, it transmits a new advertisement. This protocol converges to a consistent network graph in every forwarder.

TABLE 2.1. A selection of IP session protocols.

	
Protocol Name

	
Acronym

	
Purpose

	
Protocol Number

	
Port Number

	
Internet Control Message Protocol

	
ICMP

	
control

	
1

	

	
Internet Group Management Protocol

	
IGMP

	
2

	

	
Open Shortest Path First

	
OSPF

	
89

	

	
Border Gateway Protocol

	
BGP

	
	
179, TCP

	
Domain Name System

	
DNS

	
	
53, TCP or UDP

	
Dynamic Host Configuration Protocol

	
DHCP

	
	
67 and 68, UDP

	
Network Time Protocol

	
NTP

	 

	
123, UDP

	
Transmission Control Protocol

	
TCP

	
transport

	
6

	

	
User Datagram Protocol

	
UDP

	
17

	 

	
Authentication Header (IPsec)

	
AH

	
security

	
51

	

	
Encapsulating Security Payload (IPsec)

	
ESP

	
50

	

	
Transport Layer Security

	
TLS

	 

	 

	
HyperText Transfer Protocol

	
HTTP

	
application

	
	
80, TCP

	
Simple Mail Transfer Protocol

	
SMTP

	
	
25, TCP

	
File Transfer Protocol

	
FTP

	 

	
20 and 21, TCP

The cost of a link is usually inversely proportional to its bandwidth. After each change received, each forwarder runs the well-known Dijkstra’s algorithm on its graph to compute its “shortest” (least-cost) path to each forwarder, from which it constructs its own forwarding table. OSPF is called a “link-state” routing protocol, because it distributes the states of links, where “state” means cost.

So far OSPF tells a forwarder how to reach another forwarder, but what about finding other IP members? OSPF is also used to distribute the mapping from blocks of IP names to their closest forwarders.

2.4.5. IP session protocols

There are hundreds of IP session protocols—a tribute to the Internet’s phenomenal success and to the inventiveness of those who build on it. We will mention only a few of them here, chosen both because they are important and because they illustrate architectural points. The protocols are summarized in Table 2.1.

The protocols in the table have four general purposes.

	Control protocols are used to access, compute, and disseminate network state. ICMP is used for notifications and queries having to do with packet processing. IGMP controls the memberships of multicast groups. BGP and OSPF are routing protocols. DNS and DHCP will be explained in Chapter 3. NTP is used by members to synchronize their clocks.

	The purpose of a transport protocol is to carry data of any kind. TCP provides the service of reliable, ordered delivery of a byte stream—which takes a lot of work because Internet transmission can lose, duplicate, or re-order packets (recall the list of session services in §2.2.5.3). It also provides the service, for the benefit of the network as a whole, of congestion control. Its messages are called “segments.” UDP simply delivers individual “datagrams,” without additional services, which is better than TCP for some purposes because the protocol does not introduce any delays.

	AH, ESP, and TLS are all security protocols based on encryption. These protocols provide the services of data integrity, data confidentiality, and endpoint authentication. AH and ESP belong to a family of protocols known as IPsec.

	HTTP is the well-known application protocol used for the World-Wide Web. SMTP is a protocol used for transferring email between servers. FTP is a protocol for (guess!) transferring files. There are many more IP session protocols for other distributed application systems.

IP networks make extensive use of protocol embedding. Most packets have as their outer protocol TCP or UDP, and follow the general packet format of §2.2.5.4 reasonably well, in the following way. Their session identifier is called the “source port number,” and their payload descriptor is called the “destination port number.” The destination port number is usually a “well-known port” associated with an embedded protocol or application (overlay). For example, in the table, destination port 80 is the well-known port for HTTP. According to IP rules, the full session identification includes the source name, destination name, session protocol, and both port numbers, i.e., session identifier and payload descriptor.5

Cases with three session protocols are more complex and less uniform, as illustrated in Figure 2.13. At the top of Figure 2.13, the session-protocol field in the network header selects security protocol ESP.6 ESP session headers have a next-protocol field, which is used to select TCP. Then the well-known port in the TCP session header selects HTTP.

At the bottom of Figure 2.13, the session-protocol field in the network header selects TCP. In the TCP session header, the destination port number is 443, which is a well-known port for the embedding of HTTP in TLS (or HTTPS for short). In other words, the well-known port encodes two next-protocol fields together. For every application protocol embedded in TLS, there is a well-known port for that fixed embedding, and the TLS header has no next-protocol or application field. In the same way, Datagram Transport Layer Security (DTLS) is a form of TLS always embedded in UDP, and with no session-protocol field of its own.

[image:]
FIGURE 2.13. Complex protocol embeddings in IP packet headers. Note that both these packets are carrying approximately the same thing, which is encrypted HTTP payloads.

The weakness of the IPv4 packet format is that session identification is not uniform across session protocols. Unlike TCP and UDP headers, session headers of other outer protocols, for example AH and ESP, do not have two port numbers (or fields that look like port numbers). This causes unnecessary complications (see Chapter 6). In practice, the IP packet at the top of Figure 2.13 would probably have UDP as an outer protocol, with the three other protocols being embedded inside it, just to take advantage of UDP session identification.

2.4.6. IP services

IP networks are usually described as offering “best-effort” packet delivery. This means that they do not generally offer guarantees about packet loss rates, bandwidth, delay in packet delivery, or packet ordering.

Through their session protocols, IP networks offer plain point-to-point service (UDP), a reliable byte stream service (TCP), various security services, and many more specialized services (see examples in Table 2.1).

Application programs use UDP and TCP services through a “sockets” library. At each endpoint of the session, the application uses the library to create a socket object. On the initiating side, the application specifies TCP or UDP, a destination name, and a well-known port number to be used as the destination port. On the accepting side, the application specifies TCP or UDP and a well-known port number at which it will accept sessions. The libraries at both ends exchange messages to set up particular sessions, the identifiers of which are “five-tuples” including UDP versus TCP, the names of both endpoints, and the port numbers being used by both endpoints. When session setup is complete, the library code at each endpoint passes back to the application a pointer to the created socket object, which the application can use as a local session identifier. The application can then send and receive messages in the session by using methods of the object, which is a form of the user interface shown in Figure 2.6.

IP networks also offer broadcast, multicast, and anycast services. The name of the IP broadcast group is 255.255.255.255. All the names in the 224.0.0.0/4 block are set aside for multicast groups. Most other IP names can be anycast group names. Interestingly, these three services are implemented in three completely different ways, explained separately in Chapters 3 and 5.

2.5. Other network designs

So far we have seen two very well-known designs for general-purpose networks, small (Ethernets) and medium-sized or large (IP networks). In this section we will look at several networks on the other end of the spectrum, being specialized, uncommon, or both. The point is to show that the structures and functions defined in §2.2 can be used to describe and explain all networks, although the variations from network to network can be considerable.

Two tables summarize some comparisons among networks in this chapter. Each table has a column for each of the six network types covered. Table 2.2 compares them with respect to some basic design characteristics. Table 2.3 compares them with respect to terminology, giving the terms used in the literature for their components and structures, all of which are synonyms for our common terms.

2.5.1. Mobile ad-hoc networks

Mobile ad-hoc networks often go by the acronym MANET, the pronunciation of which seems to cause lively disagreements. Most people side with the French Impressionist painter, although he didn’t know much about networking.

MANET members are small, mobile, battery-powered machines. MANET links are radio broadcast links. MANETs are essential for some situations and desirable for others because they require no installed hardware infrastructure, making them cheap and quick to deploy. They are also self-organizing, with no single points of failure. Thus MANETs are particularly important for environmental monitoring, disaster relief, and military communications.

MANETs have forwarding, even though they have broadcast links. As the members move around, they move in and out of each other’s radio range, which means that the sets of members able to reach each other through each radio frequency is changing frequently. A member forwards packets because, even though the sender and receiver can both reach the forwarder, they cannot necessarily reach each other.

TABLE 2.2. Comparison of network characteristics.

	
	
Ethernets

	
IP Networks

	
Mobile Ad Hoc Networks

	
Named Data Networks

	
Resilient Overlay Networks

	
MPLS Networks

	
Number of Members

	
small to medium

	
any size

	
small

	
any size

	
small

	
any size

	
Topology

	
spanning tree

	
any

	
irregular and highly dynamic

	
any

	
fully connected

	
any

	
Links

	
wires, point-to-pt

	
virtual, pt-to-pt

	
radio, broadcast

	
virtual, pt-to-pt

	
virtual, pt-to-pt

	
virtual, pt-to-pt

	Session Protocols

	only control protocols

	
many

	
in ZebraNet, many modes of communication

	one, for data retrieval

	
vestigial

	
vestigial

TABLE 2.3. Comparison of network terminology. Note that in MANETs, RONs, and MPLS networks, all members act as forwarders. An omitted entry means either that terminology differs among instances of the type, or that no term is used for this concept.

	
	
Ethernets

	
IP Networks

	
Mobile Ad Hoc Networks

	
Named Data Networks

	
Resilient Overlay Networks

	
MPLS Networks

	
Member Name

	
“MAC address”

	
“IP address”

	 

	
mnemonic data name

	
“IP address”

	
vestigial

	
Link Identifier

	
“port”

	
“port”, “interface”

	
radio frequency

	
“interface”

	 

	 

	
Forwarder

	
“switch”

	
“router”

	
member

	
“router”

	
member

	
member

	
Packet

	
“frame”

	
packet

	
packet

	
packet

	
packet

	
packet

	
Session

	 

	 

	 

	 

	
“flow”

	
“label-switched path”

	
Message

	 

	
“datagram”, “segment”

	 

	
message

	 

	 

Unlike Ethernets and IP networks, in MANETs there is no distinction between infrastructure members (forwarders) and user members. All members are expected to exchange routing information and forward packets. Various routing protocols are used, some similar to Ethernet routing and some to IP routing, but those protocols must be adapted to work in unknown and changing topologies. For example, the routing protocol (the Ad-hoc On-demand Distance Vector protocol) that is similar to Ethernet routing cannot rely on a tree topology, so it uses a kind of timestamp to prevent the formation of persistent forwarding loops.

Not surprisingly, the deployment advantages of MANETs are balanced by a long list of challenges and disadvantages. Network service is slow, unreliable, low-bandwidth, and highly variable, in comparison to more conventional networks. Engineers must cope with the problems of collisions (simultaneous transmissions on the same frequency) and unpredictable changes in topology. There are severe limits on battery power, computation, and memory, so the network design is often tightly integrated with the application, and both are highly optimized.

It is fitting that the first exhibit in our zoo of exotic networks is ZebraNet, a MANET for studying the behavior, particularly migration patterns, of zebras [43, 52]. The goal of ZebraNet is to collect data from sensors on collared zebras. The data includes a GPS position logged every 3 minutes, plus detailed biometric data logged for 3 minutes every hour, for a total of about 6 KB (kilobytes) per day.

The design challenges of ZebraNet are daunting: The zebras are sparsely distributed over thousands of square kilometers. There can be no fixed base stations or other equipment. The collars can weigh no more than 5 pounds (and sometimes less), and cannot be touched by human hands more often than once a year (which would seem impossible, but is possible because the collars are big enough to have solar panels to recharge the batteries). Although communication delay is not important, essentially all of the data must be collected eventually.

Data is collected sporadically, whenever a vehicle carrying a base station is driven near enough to a zebra. On detecting the base station, the zebra’s collar sends all its accumulated data, after which it can delete the data and release the storage for reuse. Consequently, the destination of all data communication is a base station, but most of the time there is no base station to find, and no known relationship between the locations where a base station might appear and the locations of particular zebras (recall that the purpose of the system is to study zebra migration!).

To get their data closer to a base station, zebra collars detect the proximity of other zebras and send their data to the other zebras’ collars. Between this dissemination and the physical movement of the zebras, all data is expected to make its way to a base station (see Figure 2.14). Heuristics can be applied, for example preferentially sending data to gregarious zebras that have been near base stations in the recent past (as opposed to the shy ones that never go near people). Overall, ZebraNet members forward packets, but in unusual ways: they buffer them for long periods, and they forward the same data to many members in hopes of reaching a destination whose location is unknown.

For such a simple network, ZebraNet is surprisingly rich in services. A session consists of one message, carrying up to 32 KB of data. This message is fragmented into many small packets for radio transmission. Each session can be either point-to-point, broadcast, or multicast, and each session can have either reliable delivery or not, regardless of what kind of “cast” it is. These various modes of communication are needed for diverse tasks related to zebra discovery, base-station discovery, and data transmission.

[image:]
FIGURE 2.14. Routing of messages in ZebraNet.

The primary research goals of ZebraNet (in computer science) were concerned with hardware design and hardware/software integration, so there was no large-scale trial of network performance. The behavior of ZebraNet was simulated on a grid of 20 square kilometers, plotting the success rate of data collection against radio range. This is the key performance trade-off, because radio range is directly related to energy consumption [43]. Without storage or bandwidth constraints, collection of 90% of the data is achievable with a radio range of 4 kilometers, and 100% success is achievable at 6 kilometers. With harsh constraints on either storage or bandwidth, the radio range must be 8 kilometers to achieve high data collection rates. Note that within radio range, bandwidth is a shared resource, because simultaneous transmissions interfere with each other.

2.5.2. Named Data Networks

To start, we can think of a Named Data Network (NDN) as a distributed system with the purpose of making data globally available. Each packet-sized chunk of data has a human-readable, hierarchical name such as ucla/videos/demo.mgp/1/3, referring to the third chunk of the first version of a demo video made at UCLA. For each application area served by the system, there is a naming scheme so that applications know how to name the data they are looking for, and so that different data producers do not generate data with the same name.

All distributed systems can be viewed as networks. Sometimes that view is boring, but for Named Data Networks it is extremely interesting—so much so that NDNs have been proposed as a replacement for IP networks [2, 99].

There are two enormous differences between IP networks and NDNs. First, it is a major design principle of IP networks that forwarders do not maintain any state information about individual sessions. There are many session protocols, and all operate independently of routing and forwarding. In NDNs, on the other hand, there is a single session protocol—for retrieving data by its name—and forwarders play a huge role in it. It is no exaggeration to say that NDN forwarders along the path of a session are as active in executing the session protocol as the session endpoints are.

Second, in NDNs the identities of members are much less important than in IP networks, because the real target of a request is a chunk of data rather than a particular member. So in NDNs, unique names of members are vestigial. Each data name is an anycast group name, and any member where that chunk of data is available is a member of the anycast group and bears that name. Request packets have data (anycast) names in their destination fields, and are forwarded to some member with that name. Even in IP networks some members have more than one anycast name, but in NDNs the multiplicity is much greater.7

An NDN session consists of two messages: an “interest” (request) message, and a “data” (response) message. Each message is transmitted in a single packet. Some aspects of the session are shown in Figure 2.15. The request message has a data (destination) name demo/1/3 and a “nonce” (session identifier) ident. It does not have a session-protocol field because there is only one protocol to choose from. It does not have a source name, either, for reasons explained below.

[image:]
FIGURE 2.15. A session in a Named Data Network.

In the figure, two network members have the name demo/1/3; one is the origin of the data, and the other is a cache that happens to have it. Routing is similar to routing in many other network designs, with forwarders advertising names or name prefixes to which they have routes. So the request message is forwarded toward the data, until it reaches the data cache, which becomes the endpoint of the session. As the request message passes through each forwarder, it causes the forwarder to put a record for the session in its “pending interest table.” The record contains the destination name, session identifier, and the identifier of the incoming link on which the message arrived.

The cache responds to the request message with a data (response) message, sending the response to the same link where it received the request. The message contains the data name, data, and security information (which is not discussed further here). When the response message reaches a forwarder, the forwarder looks up the data name in its pending interest table. It finds the entry with a matching name, forwards the response message toward the session initiator based on the link identifier in the table, and deletes the table entry.

Sometimes a request message reaches a forwarder that already has an entry with the same name in its pending interest table. In this case the forwarder becomes the endpoint of the session. It puts the new request in its pending interest table. When a data message arrives in response to the earlier request, the forwarder replicates it to respond to both requests, which will (ask yourself why) have different incoming links. The forwarder may also decide to cache the data locally.

Eventually a response message will retrace the forward path of the session back to its initiator. If the initiator is always a retriever of data and never a source of data, it has no network name at all. In summary, request messages/packets have a destination name and no source name, while response messages/packets have a source name and no destination name. Response messages make their way back to the session initiator by following the session trace in pending interest tables. The purpose of this mechanism is to shorten the length of sessions as much as possible, thus minimizing overall load on the network.

For faster data retrieval when the network is not heavily loaded, a forwarder could replicate an interest message and forward it along multiple possible paths. This is a mild version of flooding as in Ethernets (§2.3.3), and like Ethernet flooding, can cause an interest message to travel in a loop back to its sender. Rather than restrict network topology as Ethernets do, Named Data Networks have their forwarders detect loops. If a forwarder receives a request message that is already in its table—it matches both data name and session identifier—it simply drops the new copy.

2.5.3. Resilient Overlay Networks

Resilient Overlay Networks (RONs) were investigated in a research project that is now quite old [4]. This may make them seem out-of-place among much more important and contemporary network designs, but that is a mistaken impression. The ideas pioneered in the research project have been developed extensively and are ubiquitous in today’s Internet, particularly in proprietary overlay networks for streaming video. They are also widely deployed in proprietary networks used by government and business customers, for example in education, healthcare, and on-line commerce. These networks integrate cloud computing with network services, and the proprietary networks layered on the Internet support enhancements in security and performance.

If there are so many contemporary examples, why talk about RONs? Because they are relatively simple, and their design is published, neither of which is true for contemporary examples.

A Resilient Overlay Network (RON) [4] is a small network (fewer than 50 members). Like a MANET, a RON is “peer-to-peer,” meaning that all members are infrastructure members.

The members of a RON are fully connected by two-way virtual links. These links can experience outages and periods of poor performance, during which the packet loss rate or transmission delay may be high, or the throughput may be low. Although the links always recover from these episodes, recovery may take minutes or even hours in some cases.

The purpose of a RON is to provide its members with better service between members than mere use of the direct links between members would provide, based on the performance metrics—packet loss rate, round-trip latency, or throughput—selected by applications as most important. Most importantly, the network recovers from link outages within seconds, rather than minutes or hours.

To achieve these goals, RON members continually monitor the performance of the links between them. They also distribute performance data regularly, so that each member can maintain a full picture of network topology and current link performance. From this picture, each member computes several best routes to all the other members, one for each set of preferences on performance metrics. When the direct link to a destination member is performing poorly, the best route to that member may traverse multiple (usually two) other links, as shown in Figure 2.16. RONs must be small, and indirect paths must be short, because otherwise the combinatorial burden of all this performance signaling and computation would be too great.

[image:]
FIGURE 2.16. A Resilient Overlay Network, marked with alternative routes between a and c.

A RON session is called a “flow” and has a unique “flow identifier.” There is no actual session protocol, because the only purpose of a session is to group packets so that they are, as much as possible, forwarded together. When the first packet of a flow is being forwarded by a member, the member first looks at the “policy tag” in its header, which uniquely indicates a set of routing policies and preferences.8 From the policies and preferences, the forwarder chooses one of a set of forwarding tables (the one that was constructed with the closest set of policies and preferences in mind). The forwarding table itself is a simple mapping from destination to outgoing link. The outgoing link is stored with the flow identifier in a local cache, so that, as long as performance metrics do not change much, additional packets of the flow can be forwarded with less computation.

In a network as sensitive to performance as a RON, it is necessary to think about stability. The routing algorithm avoids rerouting a flow unless the performance improvement is more than 5%, because more frequent changes are likely to be reversed, causing the route to flap back and forth, with accompanying packet re-ordering and jitter (all performance quantities in this section will be defined in §2.6.2).

As a result of these mechanisms, in experiments on the RON testbed, RON successfully routed around all throughput failures. This took 18 seconds on the average, even when network links were performing very badly. In its most effective cases, RON was responsible for doubling the TCP throughput or reducing the loss probability by at least.05 (for example, from.1 or 10% of packets to.05 or 5% of packets).

Stepping back from the details, RON’s aggressive rerouting of traffic to better-performing paths is actually very peculiar. In most networks, this would quickly overwhelm the better links, causing their performance to degrade and resulting in chronic instability. We will continue the RON example in Chapter 3, where this peculiarity will be explained.

2.5.4. Multi-Protocol Label Switching networks

Multi-Protocol Label Switching (MPLS) networks play an important role in the Internet ecosystem, which will be presented in Chapters 3 and 4. Here we simply present MPLS as an interesting and unusual network design, leaving an explanation of its usefulness until later.

A Multi-Protocol Label Switching (MPLS) network exists to implement a set of long-lived, pre-configured, one-way, point-to-point sessions. An MPLS session is called a “label-switched path.” An MPLS packet header consists of a session identifier only, because the packet destination is implicit in the session.

Before we go on to the details, note that MPLS packets do not have source or destination names in them. In fact, MPLS members have only vestigial names. This works because the only machines that have members of MPLS networks are machines with IP forwarders as members. The control functions for an MPLS network, most prominently setting up label-switched paths, are performed by IP control protocols executed by the co-located IP members. They use their IP names to find each other, of course, so the MPLS members need no names of their own.

Returning to the MPLS design, if there were a unique identifier for each session, then in the forwarding tables of MPLS forwarders, each session identifier would simply be mapped to the outgoing link in the session path. The problem with this design is that either it is quite difficult to ensure that session identifiers are globally unique, or the namespace of session identifiers requires far too many bits.

To ensure the efficiency of MPLS hardware, MPLS session identifiers or “labels” are only 20 bits long. Lookup in forwarding tables is much faster than lookup in IP forwarding tables, both because MPLS labels are shorter than IP addresses, and because labels must match exactly. Lookup in IP forwarding tables, in contrast, has complex longest-prefix matching of destination names, and possibly matching on other fields.

But what about the uniqueness of short session identifiers? To achieve uniqueness, a packet has a different session identifier or label on every hop. This way, a label only needs to be unique at the receiver of an MPLS link, which is easy to achieve by letting the receiver choose the label as the session is set up.

To illustrate forwarding in MPLS networks, Figure 2.17 is a graph view of an MPLS network showing some sessions and physical links. Consider a packet traveling from Chicago to San Francisco in session 𝒲 or 𝒳. The forwarding table at Dallas has the following entries:

	
Incoming Label

	
Instruction

	
Outgoing Label

	
Outgoing Link

	
8

	
swap

	
3

	
A

	
2

	
swap

	
6

	
A

and the forwarding table at Phoenix has these entries:

	
Incoming Label

	
Instruction

	
Outgoing Label

	
Outgoing Link

	
3

	
swap

	
4

	
E

	
6

	
swap

	
4

	
D

At each city, the forwarder matches the incoming label in the table, changes the label in the packet to the table’s outgoing label (this is the meaning of the instruction “swap”), and forwards the packet onto the outgoing link. The swap does not qualify as one of the “rewrites” mentioned at the end of §2.2.4.2, because it is an optimization with no semantic significance.

MPLS networks are often “hierarchical,” for reasons to be explained shortly. When there is a hierarchy, MPLS labels are viewed as a stack (outer label on top, inner label on the bottom). The stack is manipulated with the additional instructions “push” and “pop.” For example, even when the stack size never exceeds one, a “push” instruction is used in Chicago to push label 8 onto packets for session 𝒲, and 2 onto packets for 𝒳. In San Francisco, when the forwarder receives packets with labels 2, 4, or 9, a “pop” instruction in the table causes it to strip off the label, and receive the packet in session 𝒱, 𝒲, or 𝒳.

[image:]
FIGURE 2.17. An MPLS network. Sessions are named with red script capital letters. Their paths are drawn in red, with red labels on each hop. Physical links are drawn in black, and some are named with black capital letters.

A hierarchical MPLS network makes it possible for a session to serve as an alternative for a link in another session’s path. If the network in the figure is used hierarchically, and if link A is congested or unavailable, the forwarding table at Dallas might be changed to look like this:

	
Incoming Label

	
Instruction

	
Outgoing Label

	
Outgoing Link

	
8

	
swap

	
3

	
𝒴

	
2

	
swap

	
6

	
𝒵

	
send 𝒴

	
push

	
5

	
C

	
send 𝒵

	
push

	
8

	
B

	

Now packets with outgoing label 3 are being sent out session 𝒴 as an alternative to sending them out link A, and packets with label 6 are being sent out session 𝒵. How does a forwarder send a packet out on a session instead of a link? The same way a packet source would do it! The table says that to send out session 𝒴 or 𝒵, respectively, the forwarder must push a new label on the stack in the packet header before forwarding it onto a link.

At the end of link A or session 𝒴 or 𝒵, in Phoenix, the forwarding table is also different:

	
Incoming Label

	
Instruction

	
Outgoing Label

	
Outgoing Link

	
3

	
swap

	
4

	
E

	
6

	
swap

	
4

	
D

	
7

	
pop (receive 𝒴)

	
	

	
5

	
pop (receive 𝒵)

	
	

	

Along the way, the outer labels for sessions 𝒴 or 𝒵 have changed to 7 or 5, respectively. If a packet comes in with outer label 7, after label 7 is popped off the stack, the result will be a packet with label 3. If a packet comes in with outer label 5, after label 5 is popped off the stack, the result will be a packet with label 6. Both packets are then matched in the table again, their labels are swapped, and they are forwarded. In the case of the packet with label 6, it is forwarded out link D to Los Angeles.

2.6. Properties of networks and services

To finish this chapter on describing networks and their services, we will shift our perspective, from describing the internal design of networks (the “how”) to their external behavior in terms of properties (the “what”). Each network is a solution to a design problem, and the design problem is stated, explicitly or implicitly, in terms of these properties. Sections 2.3 through 2.5 showed that there is a wide variety of network designs, so there must be a wide variety of properties for them to satisfy.

For reference, in a stereotypical network design problem, there are three parts.9 First, there are facts and assumptions about the user members that the network must serve, and about the technological components (links, computers) available for use in doing it. Facts are best, but when facts about the future are not known, assumptions may have to do. Money (costs, revenues) is never out of the picture, but won’t be considered explicitly here.

Second, there are requirements and goals for how the network handles and delivers the packets that are sent through it. Requirements are absolute, while design goals are softer, allowing room for a range of behaviors, some better than others. For networks, requirements and goals are also called service properties. A service property has (i) a well-defined set of packets that have entered, or might in the future enter, the network, and (ii) a statement about how the network handles and delivers these packets.

The third part of the problem is the design itself, covering all the aspects introduced in §2.2. When network design is successful, the facts and assumptions, plus the design, imply that the requirements and goals are satisfied.

Facts, assumptions, requirements, and goals are all expressed as properties. The next three subsections present these properties classified in a different way, as topological properties, performance properties, and logical properties.

2.6.1. Topological properties

Topological properties are relatively simple. They are always facts/assumptions or designs, never requirements/goals.

The topological facts and assumptions concern the members (actual or potential) to be served by the network. How many are there? Where are they located? Are they mobile? The scope of a network is the set of machines that participate or may participate in the network, which means that the machine is hosting a member of the network. The span of a network is its geographical footprint, the area within which it connects machines.

Topological designs, of course, are like those illustrated in Figure 2.2—they determine the number and location of infrastructure members, and how they are connected (to each other and to user members) by network links.

2.6.2. Performance properties

Performance properties are quantifiable, with numbers in them. There are many interesting performance properties in network design, both requirements/goals and facts/assumptions.

In reading this section, please be aware that there is considerable variation in how people use performance terminology. Also be aware that there is a difference between a measurement (“quantity X is now Y units”), a requirement (“quantity X must always be at least Y units”), and a fact (“quantity X is always at least Y units”).

2.6.2.1. REQUIREMENTS AND GOALS

Performance requirements and goals are quantitative properties of services, usually defined over large aggregations of packets.

A “service-level agreement” (SLA) is a contract between a customer and a network service provider, specifying the performance properties of the service to be provided, and the financial penalties for the provider if the properties are not satisfied. Although SLAs are legally binding, they are often more aspirational than enforceable, especially if the relevant measurements are made only by the service provider! Nevertheless, it is beneficial for network management to define and measure performance properties. In the remainder of this subsection we will introduce the major ones.

Availability

Availability refers to the percentage of time that a network service is available to its users. The familiar phrase “five nines of availability” means that the system is available 99.999% of the time.10

TABLE 2.4. A service-level agreement for availability, measured over a calendar month.

	
Cumulative outage time (hours:minutes:seconds)

	
Credit as percentage of monthly fee

	
00:00:00 - 00:45:00

	
0

	
00:45:01 - 04:00:00

	
10

	
04:00:01 - 08:00:00

	
15

	
08:00:01 - 12:00:00

	
20

	
12:00:01 or more

	
25

When availability is measured, outages due to scheduled maintenance and natural disasters are typically excluded. Minutes when the outage existed but was not reported by the customer may also be excluded.

Table 2.4 shows a sample SLA, in which availability is measured as outage time in a calendar month. If there are more than 45 minutes of outage in the month, the customer gets a refund of some percentage of the monthly fee. Another kind of SLA might refund the daily fee for every day that there is more than 30 minutes of outage.

Latency

Latency is the amount of time it takes for a packet to be delivered. The latency of a service often refers to a “round-trip time,” the total elapsed time for a request packet and its subsequent response, measured at the request sender/response receiver. It would be much harder to measure one-way latency, because two network members would have to share state and synchronize clocks.

These days typical round-trip latencies for wide-area (long distance) networks are 15 milliseconds (msec) within a region, 50 msec within an average-sized country, 100 msec across a continent or ocean, and 250 msec across the globe. For digital transmission of voice, the maximum latency is 150 msec—if the transmission delay is longer than this, people cannot talk normally. Putting these facts together, you can see that subnetworks transmitting intercontinental voice traffic must have better performance than what is typical for data in the Internet.

Loss rate

Loss refers to the loss of a packet during transmission. In a network with physical links, packets can be lost because bit errors are introduced in transmission, the errors are detected, and the packets are discarded. In a network with physical broadcast links, packets can be lost because of collisions (simultaneous, interfering transmissions). Packets can also be lost when a buffer in a forwarder overflows. The loss rate of a service is usually measured as a probability of packet loss, as the actual number of losses is proportional to the rate of sending.

Jitter

Jitter is variation in packet latency. Jitter makes a difference when packets in a stream, for example voice or video packets, are sent at a steady rate. The voice or video must be played by the receiver at a steady rate, which is more difficult to do if there is jitter. Then the receiver must maintain a buffer of received packets, and delay playing them until there are enough packets in the buffer for a steady playback stream. If the buffer is not big enough when packets are arriving fastest, some of them will be lost.

Any receiver can measure jitter for itself, assuming that the packets are sent at a steady rate. Jitter is computed from inter-packet gaps, and measured in standard deviations or simply as the difference between maximum and minimum gaps.

Bandwidth

Bandwidth refers to the amount of traffic carried, or that can be carried, typically measured in bits or bytes per second (Mbps or MBps, respectively). Even residential customers of an Internet service provider have SLAs for bandwidth, called “service plans.” For example, a household might get an average of 6 Mbps upstream and 100 Mbps downstream.

Bandwidth is so important that there are many words for it, sometimes referring to bandwidth in specific contexts. “Throughput” is a synonym for bandwidth, and its variant “goodput” refers to useful bandwidth. For example, a session protocol with reliable delivery detects packet loss and requests retransmission of lost packets. When the loss rate is high, the goodput (unique packets transmitted) will be significantly less than the throughput of raw packets transmitted, including retries.

Other properties

In an SLA, there can be different categories of traffic, with different performance requirements. For example, Web traffic is bursty in nature, and usually travels in sessions with reliable delivery. For this traffic, jitter is unimportant, and latency and loss rate only matter if they are quite high. Audio and video, on the other hand, are sent in smooth streams of nearly constant rate. Latency is important, as noted above, and so is jitter.

The actual perceived quality of received audio or video is difficult to measure, because it depends on subtle combinations of latency, loss, and jitter, and on how these imperfections interact with human perceptual systems. Typically quality of voice and video are measured by asking users what they think, and calculating a statistical “mean opinion score.”

Expanding the scope of requirements from a network itself to organizational behavior, an SLA can have requirements such as “any outage will be repaired within 4 hours.”

2.6.2.2. FACTS AND ASSUMPTIONS

The beginning of §2.6 mentioned facts and assumptions about user members, and facts and assumptions about the technological components from which network infrastructure is built. Performance is important in both cases.

Concerning components from which infrastructure is built, based on their underlying technologies, links have availability, loss rate, maximum bandwidth, and latency. Note that either availability or loss rate can be called “reliability,” especially if the subject is a hardware component. The maximum bandwidth of a link is also called its “capacity.” Based on the technology of the machines that host them, forwarders have availability and maximum bandwidth. The maximum bandwidth of a forwarder is also called its “throughput.”

Concerning the user members of a network, the most important assumption is the bandwidth of the traffic that they send to the network. This bandwidth (typically average or maximum) is also called “offered load,” and it indicates how much traffic the network is expected to carry. As the traffic spreads across the network, it creates a dynamic “load” (also bandwidth) on each link.

Normally the goal of a network design is to carry all of the offered load with good performance. But if offered load fluctuates a lot, it may be too expensive to run a network that handles every peak with ease. If service performance must suffer during the highest peaks, it might be allowed to suffer in an uncontrolled way, whatever the results. Alternatively, session protocols (part of the network design) could incorporate congestion control, limiting the rate at which user members feed traffic to the network. At peak loads, congestion control leads to fairer, more predictable performance degradation for everyone.

Congestion control can be thought of as a mathematical game played by user members of a network to allocate the resource of network bandwidth. There are other mathematical games in networks, such as auctions, which are games with the purpose of selling goods (such as network resources) at fair prices. Members are usually assumed to play these games rationally and according to the rules.

It is wise to be aware, however, that different behaviors are possible. Members can play these games irrationally, which could mean altruistically (use less bandwidth than congestion-control recommends) or adversarially (bid very high in an auction to harm other players, even if it harms the adversary as well). Or members could bend the rules to play more selfishly (use more bandwidth than congestion-control recommends). As with other network behavior, these games are played by software running on user machines in the network. Even if the software is meant to follow the rules, it can be buggy, infected, or hacked by the machine’s owner.

2.6.3. Logical properties

Logical properties are properties that can be stated as true/false questions without numbers in them. As with performance properties, logical properties appear in network design as both requirements/goals and facts/assumptions. When they are requirements or goals, both testing and verification are techniques used to help decide if they are satisfied.

2.6.3.1. REQUIREMENTS

The mother of all logical requirements is reachability, which typically applies to packets whose destinations are unique names (point-to-point service). If member A of a network can send a packet with destination name B, and that packet will be delivered to member B, then A can reach B.

Blocking is the negation of reachability. A blocking requirement would say that the packet from A must not be delivered to B.

Group services, of course, also have logical requirements. Anycast, broadcast, and multicast services apply to packets whose destinations are anycast group names, broadcast group names, and multicast group names, respectively. The corresponding requirements are that these packets are delivered to exactly one group member or all group members (for broadcast and multicast), respectively.

Other logical requirements are session properties, so they apply separately to the packets of each session. Some general-purpose session protocols satisfy logical requirements such as reliable delivery, ordered delivery, data integrity, and data confidentiality. Specialized logical requirements, such as those of Named Data Networking, are satisfied by specialized session protocols.

2.6.3.2. FACTS AND ASSUMPTIONS

Like some performance assumptions, logical assumptions concern the behavior of user members of a network. A user member of a network (a software and/or hardware module) is confined to using the network session protocols. Normally the human owner/operator is well-intentioned, and unless the downloaded software implementing session protocols is buggy, the messages sent to the network will be safe.

On the other hand, what if the sofware has been infected with a virus? What if the human user has bad intentions and the hacking skills to alter the software if necessary? In either case, the messages sent to the network can be perversions of the session protocol’s expectations, intended to cause harm. The purpose of a “threat model” is to capture these possibilities as assumptions about what the behavior of user members might be. Ideally the specification of the session protocol precludes threats and the network infrastructure rejects messages that do not satisfy the specification. If these security measures are not in place, however, the network may be vulnerable to many security attacks.

2.7. Conclusion

This chapter has shown how networks are described in compositional network architecture. They have named members and links as components. Each network has an administrative authority. The two most important functions of a network are forwarding, as controlled by routing, and handling messages aggregated into sessions, as controlled by session protocols. The purpose of a network design is to provide communication services that meet requirements and goals, given facts and assumptions about the network’s operating environment.

This descriptive template is not restrictive. The chapter presents in some detail six different network designs, in which the basic parts of a network take wildly different forms. The designs differ because the networks must accommodate different scopes—from small to very large—and different spans, including areas in which no fixed infrastructure can be installed. The designs differ because of expected performance. And finally, they differ because they are intended to provide different communication services, from single-purpose (collection of environmental data, on-demand retrieval of named data, implementation of fixed communication paths) to very general-purpose (Ethernets and IP networks).

1. In these related definitions, “communication service” is a primitive term. Paper mail is another kind of communication service.

2. Broadcast service is usually intended to let any member of a network reach all of its members. But a radio broadcast link may not reach all members of its network, due to issues of distance, signal strength, and interference. As we shall see in Chapter 3, most network links are virtual rather than physical, which means that they are abstract communication channels created by hardware or software programs in machines. And in a satellite network for home entertainment, only the satellite sends packets, and only the home antennas receive them.

3. Institute of Electrical and Electronics Engineers.

4. The term “loopback address” is used for this globally meaningful name. The same term is also used for 127.0.0.1, which is a name that any IP member can use as a destination to send packets to itself, and is obviously not globally meaningful.

5. UDP is not supposed to have multi-datagram sessions, but there is no reason why not, and in practice session identifiers are often used to group UDP datagrams into sessions.

6. You might recall seeing ESP in both “transport mode” and “tunnel mode” in the example in Chapter 1. Transport mode means that one or more session protocols are embedded inside ESP, as shown in Figure 1.7. Tunnel mode means that there is layering, and an ESP session is implementing a virtual link in an overlay network, as shown in Figure 1.8.

7. The first reaction of many people to compositional network architecture is that NDNs do not fit. However, because the new model defines member names and group services correctly, we see that NDNs are simply networks in which only anycast names are used. The paragraphs below will show that session setup uses the anycast mechanism on the lower left of Figure 2.7. Each session has only one message in each direction, so session affinity is not a problem.

8. Policies prohibit certain user members from using certain links.

9. For a generalization of these three parts, see [93].

10. Reportedly, some computer systems have nine fives of availability.

3
Composing Networks and Services

3.1. Introduction

Today, networks seldom act in isolation. What users might see as “a network” is actually a composition of multiple networks, in which each network not only acts individually as described in Chapter 2, but also cooperates with other networks. In the overall architecture, each network occupies a place determined by its geographical span, its scope (the machines participating in the network), its purpose (the services it provides), and its level of abstraction (whether its concepts are closer to raw hardware or to user concerns).

There are two basic operators for composing networks: bridging (§3.2) and layering (§3.3). In explaining each one, we will cover both the mechanisms through which the networks cooperate, and the effects of composition on the services they provide. These sections are full of examples, which complete the overview of Internet basics that was begun in Chapter 2. Some of these examples fill in gaps left purposely in those earlier explanations.

Layering is such a versatile mechanism that the examples of it continue in §3.4. Some of these examples are included just to make a particular point, while others, such as cloud computing, are important parts of today’s Internet environment.

3.2. Bridging

3.2.1. Definition of bridging

When two networks are bridged, there are links that cross the network boundary between them. Each bridging link has an endpoint in each network, and belongs to both networks. The endpoints of bridging links are called gateways, because packets can be forwarded through them from one network to another, as shown in Figure 3.1. Because bridging makes one network reachable from another, sessions can cross the network boundary, with packets traveling along paths in both networks.

[image:]
FIGURE 3.1. A session view of bridged networks.

Two bridged networks must be similar in important ways. In particular, they must have compatible network-header formats—and especially compatible syntactic namespaces—because the gateways at both ends of a bridging link must process the same network headers. They must also share session protocols, or sessions crossing network boundaries would not be possible. With these restrictions, bridging has the following properties, all of which are formally defined:

	Bridging applies to a set of networks—two or more.

	With bridging, reachability in the set of networks is the combined effect of forwarding in all their members.

	If a network can be partitioned into two subnetworks, with some links connecting them, then those subnetworks are behaviorally equivalent to two bridged networks with the connecting links as bridging links. In this case the subnetworks have the same administrative authority.

	Similarly, two bridged networks are behaviorally equivalent to a single supernetwork containing all members and links of both networks, including the bridging links. The bridged networks may not have the same administrative authority, but this does not affect formally defined network behavior.

In the last two points, the ideas extend to more than two subnetworks.

Bridging is an extremely important part of Internet architecture, and it is general enough to compose networks with separate administrative authorities (§3.2.2).

Bridging networks with overlapping namespaces is a challenge, but the Internet architecture requires it. §3.2.3 introduces another form of composition (which is not network composition!) that helps overcome the challenge. Then §3.2.4 explains how networks with overlapping namespaces are bridged in the Internet.

Even the networks of the Internet must sometimes interoperate with networks that are dissimilar, with incompatible network headers or disjoint session protocols. Bridging will not work in this situation, but the new form of composition from §3.2.3 does, as explained in §3.2.5.

The effect of bridging on network services is very obvious: provided that networks share routing information, the reach of each network is extended to other networks.

3.2.2. Example: Bridging networks in the Internet

The global network that is called “the Internet” is actually a vast collection of IP networks bridged together in various places. In the Internet each network is called an “autonomous system,” reminding us that each network has a separate administrative authority. Note also that some network operators have networks so large they are divided into multiple autonomous networks. As of 2023 there are around 75 thousand networks in the Internet.

Recall from Chapter 2 that the IP namespace is divided hierarchically into blocks. Each network is allocated its own block or set of blocks. This ensures that the member names of each network are disjoint, and also makes it easy for each network to advertise concisely the names of its members. The Internet works at its global scale because its forwarders perform routing and forwarding on blocks of names rather than individuals.

The networks in the Internet are arranged by their bridging relationships into a loose (approximate) hierarchy, as shown in Figure 3.2. Edge networks exist only to carry packets for their user members. These networks include home networks, enterprise networks, campus networks, government networks, and data-center networks. They are also called “customer networks” or “stub networks.”

[image:]
FIGURE 3.2. The networks of the Internet, and their bridging relationships.

All networks other than edge networks are called transit networks, because they carry packets for edge networks. Transit networks are also called “Internet Service-Provider (ISP) networks.” Among transit networks, we single out the bottom and top tiers of the hierarchy. Access networks are the transit networks at the bottom, closest to the edge networks and providing them with Internet connectivity.1 Core networks are the transit networks at the top of the hierarchy. They are also known as “backbone” networks. Between the access networks and the core networks, there are tiers of networks with a continuum of characteristics between the two extremes.

When two user members of an edge network communicate, the path between them is local to the edge network. When members of different edge networks attached to the same access network communicate, the path between them goes through the edge networks and their access network only. When users of different access networks communicate, then the path between access networks usually goes through one or more other transit networks.

Why is there a hierarchy of networks? It exists for two equally important reasons, each explained in one of the following subsections.

3.2.2.1. THE PHYSICAL HIERARCHY

With a different layout from the one in Figure 3.2, the graph of networks and bridging relationships has core networks in the center, fanning out on all sides to a large periphery of access networks and edge networks. The graph of Internet forwarders and physical links is similar to, but obviously much denser than, the graph of networks and bridging relationships. The links in the core networks are, on the average, much longer than links on the periphery. Some of these links cross continents and oceans.

Long-distance links are very expensive regardless of their capacity, so it is economically necessary to make them high-bandwidth (imagine what it takes to lay an undersea cable!). No forwarder has infinite capacity, so the core forwarders connected to high-bandwidth links can only process packets from a few of them. At the same time, link failures in core networks could partition large swaths of the Internet—disconnecting them from each other. The resulting design is that core networks have relatively few links per forwarder, but the forwarders are well-connected to each other, with redundant paths between them.

On the periphery of the Internet, in edge and access networks, the opposite conditions hold. A forwarder may have many low-bandwidth links to user machines or small edge networks. Each forwarder aggregates the packets from many slow links to fill up high-speed links to the Internet core.

Both theoretically and empirically, this physical hierarchy has been shown to be optimal [51]. It maximizes overall throughput, with standard assumptions about load, and equalizes the total traffic flows through all forwarders.

3.2.2.2. THE BUSINESS HIERARCHY

Whenever two networks are bridged together, there must be some sort of relationship between the administrative authorities of the two networks. If it is a business relationship, there are two kinds:

	In a customer/provider relationship, the provider network provides network service to the customer network, meaning that the provider carries packets to and from the customer. In this relationship, the customer pays the provider in proportion to the amount of traffic carried.

	In a peer-to-peer relationship, either network is willing to carry packets from or to the other network’s customers, and neither pays the other.

In the graph of networks and bridging relationships, customer/provider relationships tend to follow the hierarchy, customers lower and providers higher. In the same graph, peer-to-peer relationships are the ones that do not follow the hierarchy, but rather connect the graph horizontally.

3.2.2.3. ROUTING AMONG BRIDGED NETWORKS OF THE INTERNET

Since bridged networks exchange traffic, they must share routing information. Among the IP networks of the Internet, routing is distributed, as it is performed by forwarders using the Border Gateway Protocol (BGP). This protocol is incremental, so that messages are sent only when there are updates due to failures, restorations, and routing changes. To process an update, the forwarder performs the following steps:

	Receive an update from a neighboring forwarder in a BGP message. The message can advertise an available route, or withdraw a previously advertised route. The route is specified by an IP block the sending forwarder can (or used to) reach, the sender’s path to it (a list of autonomous IP networks), and other optional information.

	Based on existing routes and the update, compute a single best route (according to local policy) to the block. Install new rules in the local forwarding table as needed.

	Possibly export the new route to neighboring forwarders, and possibly withdraw old routes, in BGP messages.

In contrast to the “link-state” protocol Open Shortest Path First (OSPF), BGP is called a “path-vector” routing protocol, because each forwarder maintains a vector indexed by IP prefix. The value for each prefix is the best path to use to reach the designated block (including the outgoing link for each path). Path-vector routing evolved from distance-vector routing, in which each forwarder maintains a vector of distances only. Both are distributed versions of the well-known Bellman-Ford algorithm.

BGP allows a network to control the traffic that is sent to it by limiting the routes that it advertises, and which networks it advertises them to. A network can also control where it sends traffic, by means of the local policies it uses to choose among available routes. These choices are made according to business relationships. A network usually “exports” (advertises) routes learned from customers to all neighbors, to attract traffic destined for its customers to itself. A network usually exports routes learned from providers or peers only to its customers, so the network will only act as a transit network for its own customers. When a network is choosing among available routes on which to send traffic, it chooses routes from customers first, peers next, and providers last.

BGP is a complex and flexible protocol, but with flexibility comes risk. In the worst cases, inter-network routing can oscillate without converging, or can converge nondeterministically to one of several stable routes [38]. When networks use BGP according to hierarchical principles, as in the previous paragraph, avoiding exceptions as much as possible, instability and nondeterminism are prevented [35].

Chapter 2 mentioned that the Internet provides anycast service through routing. More specifically, it is provided by BGP routing as shown in Figure 3.3. In the figure, an anycast group of servers has name A. The access network of each server with name A will advertise through BGP that it knows a path to A. If a network receives two advertisements for routes to A (that are equal with respect to business relationships), it will choose the the one with the shortest path, measured in number of transit networks. If A were a unicast name this would mean that it was choosing between two paths to the same location; because A is an anycast name it is instead choosing to forward to the closest member of the anycast group.

[image:]
FIGURE 3.3. IP anycast sends client requests to the closest server in the group.

Thus, IP anycast is useful for balancing a load of requests over a group of servers, and for reducing latency by routing a client’s request to a nearby server. Is it useful for routing requests away from a failed server? Generally not, because BGP routing takes too long to converge to new routes after failure has been detected and reported. At least, though, when one server fails, requests routed to the other servers in the group will still succeed.

3.2.3. Compound sessions

In Chapter 2 we defined protocol embedding, a way of composing network services by composing the services implemented by session protocols. This section presents another rich mechanism for composing network services. It serves many purposes in networks, and one of those purposes is to solve problems that arise from bridging, as will be shown in §3.2.4.

In a compound session, two sessions are joined end-to-end, as shown in Figure 3.4. The join takes place at a middlebox called a proxy.2 A simple session is merely a session that is not a compound session.

[image:]
FIGURE 3.4. A compound session between A and C. The compound session is made of two simple sessions, joined at a proxy.

In Figure 3.4, the proxy receives the setup message for the simple session between A and B, and decides to join it to a simple session from B to C. It sends a setup message to C, and records the two simple sessions in its internal join table. Because the endpoints of the two simple sessions are different, their session identifiers are almost always different, as well. Assuming that C accepts the session, subsequently all messages from either A or C are relayed by the proxy from one simple session to the other, with header changes as specified in the join table. In Figure 3.4, the dip of the session arrow into the proxy is meant to show that two distinct sessions are joined.

In a compound session, the services of the proxy are being composed with the services of the sessions it joins. Proxies are powerful middleboxes. In addition to creating compound sessions, they can translate between different session protocols, and even act as session acceptors when they can do the job on behalf of the intended acceptor. For example, if your cellphone is turned off, a proxy in the cellular network offers to record a voice message for you.

Chapter 5 will provide much more detail about middleboxes, including how middleboxes are inserted into session paths. Another important question, discussed in detail there, is how a proxy that is initiating an outgoing session to continue an incoming session chooses the destination of the outgoing session.

3.2.4. Example: Bridging private networks with the public Internet

3.2.4.1. THE PROBLEM OF PRIVATE IP NETWORKS

Many edge networks are private in the sense that only certain machines, e.g., those belonging to an organization, are allowed to participate. Many edge networks are also private in another sense, which is that most of their IP names are taken from the private IP namespace.

Soon after the explosive growth of the Internet began, people saw that the 32-bit namespace of IP Version 4 would not be big enough to give unique names to the whole world’s networked machines [28]. As a solution to this problem, the following blocks were reserved for private IP names:

10.0.0.0/8

172.16.0.0/12

192.168.0.0/16

All other IP names are public names. A public name must have a unique meaning in the Internet, as either a member name or a group name. Private names can be reused in every private network, which greatly expands the effective size of the IP namespace.

This is a solution that has caused many problems of its own. The root cause of all these problems is that an Internet member with a private name cannot be reached by any other Internet members except those within its own private network. Edge networks do not advertise routes to their privately named members, except internally. Consequently, in the transit networks of the Internet, a private IP name is meaningless.

3.2.4.2. A SOLUTION TO THE PROBLEM OF PRIVATE IP NETWORKS

The solution to this problem is compound sessions. Private members can initiate outgoing sessions, for example to reach a Web server, with the help of a proxy called a “network address translator” (NAT), as shown in Figure 3.5.

In the figure, the member with private IP name P initiates a Transmission Control Protocol (TCP) session to a Web server with public name W. The private network routes all outgoing packets through a NAT, which has a public IP name NAT. The NAT changes the source name in packets to its own name, and also changes the source port from X to Y ; this is necessary because X may already be in use at the NAT for another outgoing session. Reverse packets from W will have NAT as their destination, and thus be routed to the proxy, which will match them in the join table with the simple session they are joined to, change their header fields, and relay them. To be clear, Figure 3.5 differs from Figure 3.4 in two ways: (i) proxy B becomes part of the session because it is named by the initiator, while the NAT becomes part of the session because of network routing; (ii) proxy B changes both the setup message’s source and destination, while the NAT changes its source only.

[image:]
FIGURE 3.5. A network address translator (NAT) enables a private member to reach a destination in the public Internet.

The NAT solution is limiting because members of the public Internet cannot initiate sessions to members with private names. This limitation greatly inhibits innovation and efficiency in peer-to-peer services, although it can be overcome with effort and resources (see Chapter 5).

The reuse of private IP names is one of those network details that reveal the value of having a formal model. In the formalization of compositional network architecture, two networks cannot be bridged unless their sets of unique names are disjoint. Group names are not so tightly constrained, however, so a network can have local group names, and a private IP name can be modeled within its network as a local anycast group name with one member.3 Verification of the formal model ensures that all the expected properties of the composition operators still hold.

3.2.5. Example: Interoperation of heterogeneous networks

Today telephone calls are mostly carried by IP networks, but during the transition period (around the 1990s) some telephone calls (sessions) crossed the boundary between the Internet and the PSTN. This is not easy to do, as IP networks and the PSTN have distinct namespaces, network headers, session protocols, and session headers. The namespace of the PSTN consists of variable-length digit strings. A full-length name begins with a country code (which is itself of variable length), followed by a digit string that conforms to the numbering plan of the corresponding country or region.

Such heterogeneous networks cannot be bridged. A compound session can traverse two heterogeneous networks, however, if sessions of the two networks are joined at an interoperation proxy. An interoperation proxy is very special because it has two halves, each half a member of a different network. An interoperation proxy is illustrated in Figure 3.6.

[image:]
FIGURE 3.6. An interoperation proxy enables a voice-over-IP device to reach a telephone in the PSTN.

Each half of an interoperation proxy is a normal member of its network in every way. The members are especially busy, however, because they must perform header translation and protocol translation on every incoming message to conform to the rules of the network and session protocol on the outgoing side. If a message carries voice data, they must even translate message payloads from one coding scheme to another. As with other proxies, the necessary state for each simple session is kept in a join table. If the two networks have different administrative authorities, then (assuming that a machine can have only one owner) the half that is not in its owner’s network must be a user member of the network it belongs to.

3.3. Layering

3.3.1. Definition of layering

Layering is the second operator, in addition to bridging, for composing networks. Unlike bridging, layering can compose networks regardless of how different their designs are. Although layering is used for a large variety of purposes in network architectures, and requires more mechanisms than bridging, its bare definition is very simple: one network is layered on another network or set of bridged networks when a link of the overlay (the network with the higher level of abstraction) is implemented by a session of the underlay networks.

Layering is illustrated in Figure 3.7. Note that the interface between layered networks is almost exactly the same as the user interface between a distributed system and a network, as pictured in Figure 2.1. To distinguish the perspectives of the two networks, whenever it is necessary, we say that the overlay transmits and acquires packets on links. The underlay sends and receives messages in sessions.

In Figure 3.7, member A of the overlay network is attached to—gets its network service from—member a of the underlay network on the same machine as A. And, of course, B is attached to b on their own machine. In other words, a is the attachment of A, and b is the attachment of B.

[image:]
FIGURE 3.7. In layering, a link in an overlay network is implemented by a session in an underlay network.

When A transmits a packet to B over the implemented link, it passes the packet to a through a buffer in a or the operating system of the machine. Next a encapsulates the packet in a message of the implementing session protocol. In this message, the overlay packet is the payload, and the headers and footers are those of the underlay network and session protocol. In the network header, the source will be a and the destination will be b. Finally, when the message is received by b, it decapsulates the packet by extracting it from the message payload, thereby removing the underlay headers and footers. Delivery to B usually means putting the message payload (now a packet) in a buffer in B or in the operating system, from which B can acquire it.

We could have proposed a different definition of layering, namely “one network is layered on another network or set of bridged networks when it uses the services of the underlay networks.” This would be correct, but it is too vague—it harks back to the notion of layering as mere hierarchical dependency, discussed in Chapter 1. As explained in §1.5.2, layering as mere hierarchical dependency (with nothing more specific) leads to an architecture in which every layering interface is different and most potential layerings are impossible—because the overlay’s interface is not compatible with the underlay’s. By defining composition precisely in terms of links and sessions, which are found in every network, we get a useful, modular layering operator with which any network can be layered on any other network.

3.3.2. Details of layering

The streamlined explanation above omits two problems that the underlay must also solve. First, b might be communicating with a on its own behalf, for example engaging in a control protocol. Also, b might be providing network service for several overlay networks. So which overlay network, if any, does it deliver the message to? There may already be state in b answering this question, but the answer is usually found in the overlay field of the header, which indicates the overlay network for which this message is being carried (if any). In this case the header names an overlay and B is this machine’s member of the overlay, so it delivers the message payload (now a packet) to B.

Often a virtual link in a high-level network is dynamic, so it is created when needed and deleted when no longer needed. Creation of the link entails setting up its implementing session, and deletion entails tearing down its implementing session. The second implementation problem concerns what happens when overlay member A creates a dynamic link to overlay member B. First A instructs a to set up a session that will implement a link from A to B. Now a needs an answer to the question, “What is the attachment of B in my network?”

This very important question is answered by a directory, a data structure that is always necessary when there is layering, with dynamic links/sessions, of two networks with different naming. A directory maps higher-level names in an overlay to lower-level names in an underlay. In this example A must have access to a directory in which it can look up the attachment of B in the underlay, which is b. When A instructs a to set up a session, it includes the session destination b.

The remainder of §3.3 will give two examples of directories that are important in the Internet ecosystem. Although directories are essential network mechanisms, we did not cover them in Chapter 2 for two reasons. One reason is that the justification for directories is layering, which was not introduced until now. The other reason is that knowing a directory is needed does not always tell us which network creates and maintains the directory! In other words, the directory for a particular instance of layering is sometimes implemented in the overlay network, and sometimes in the underlay network.4

Always remember that instead of being a single network, the underlay can be a set of bridged networks. The latter applies when the implementing session crosses network boundaries.

There is a lot of “encapsulation” and “decapsulation” in networking, and already those words have been mentioned frequently. So this is a good place to distinguish the two major meanings or usages of encapsulation.

Inside a network, “encapsulation” describes packaging a message in a network header and footer, or packaging a message of an inner protocol as the payload of a message of an outer protocol, as in protocol embedding. Protocol embedding is defined in §2.2.5.4, where the figure shows how it looks in terms of packet formats. The important thing is that, no matter how many session protocols are embedded in one another, each resulting packet has one source/destination name pair.

In network composition, on the other hand, “encapsulation” describes packaging an overlay packet as the payload of a session message in an underlay network. Now the resulting underlay packet has two source/destination name pairs, one for the overlay and one for the underlay. This gives another perspective on the power of layering, because, as we have seen in the example of Chapter 1, both name pairs are equally significant in producing the overall behavior of the network ecosystem.

To finish this overview of layering, we consider its effect on network verification and network services, verification first.

When a network is up and running, all its links must be either physical, or virtual and implemented by another real network. Yet a network with virtual links can be analyzed, verified, or simulated in isolation. For any of these techniques, one merely describes the expected performance and logical properties of implementing sessions, and plugs them into the overlay model as facts or assumptions about the properties of implemented virtual links.

If layering composes networks, how does it affect network services? Strictly speaking it does not affect the services of the overlay network at all, because the underlay is simply an implementation mechanism. Of course, this is an optimistic view in which network services are fully specified and all the promised behaviors are reliably implemented. In real networks with underspecified services and flawed implementations, the situation may be more complex.

The remainder of this section consists of important examples of layering. All links of IP networks are virtual; §3.3.3 and §3.3.4 present two major ways in which they are implemented. §3.3.5 explains how the World-Wide Web, our most important application network, is layered on the Internet. §3.4 continues with an even more diverse set of examples. This includes a description of creating dynamic virtual links, in the context of cloud computing (§3.4.5). In Chapter 4 there will be a summary and comparison of these and other examples of layering, showing all the things layering can be used for.

3.3.3. Example: Implementation of IP links between forwarders

Figure 3.8 shows a path of network members and links, extending from a mid-level transit network, and passing through an access network and edge network, all the way to a user machine. Below the path, the figure illustrates how various links in the path might be implemented. The most important feature of this picture is that the implementation of each link is independent, and there is no bridging in the lower level. At the Internet level, the path traverses intra-network links and bridging links. The Internet members at the endpoints of these links are often attached to multiple underlay networks, each of which carries packets only part of the way.

[image:]
FIGURE 3.8. Links in IP networks and their implementing sessions. Warning: This figure is distorted in that the machines look big and the networks look small, which is the opposite of their true physical sizes!

At the lower level of Figure 3.8, Ethernet networks are already familiar. Wi-Fi networks share some of the Ethernet protocols, but have radio broadcast links instead of wires.

Point-to-Point Protocol (PPP) networks are the smallest real networks in the zoo, because a PPP network consists of nothing but two members (usually on IP forwarding machines) and a two-way, point-to-point link. If the link is physical, it can be realized by any link technology. Routing, forwarding, and even naming are vestigial in these networks, as there is no use for them. All packets carried by a PPP network belong to the same session. One thing that a PPP network does have is a session protocol that defines the packet format. The other thing it has is control protocols for configuring the link, which means sharing information about its properties and endpoints.

Multi-Protocol Label Switching (MPLS) networks were introduced in Chapter 2. The layering of IP transit networks on MPLS networks has interesting aspects that will be discussed in §3.4.4.

During the earlier decades of widespread Internet use, the only physical network connecting to most homes was the PSTN, in which a session is a telephone call. The virtual IP link between these homes and an Internet gateway was implemented, not by one of the underlay networks shown in Figure 3.8, but by a telephone call through the PSTN.

Also during the earlier decades of widespread Internet use, it was common for the various links traversed by an Internet message to be implemented by networks with different limits on packet sizes. When the message reached a link for which it was too big, it had to be fragmented by the forwarder (link sender) into smaller packets for transmission across the link. If the smaller packets reached another link for which they were too big, they had to be fragmented again. All the fragments were re-assembled into a message at their final destination. Mid-path fragmentation is clearly a nuisance, and is now rare, because most networks that implement IP links have standardized on 1500 bytes of data. So the sender fragments the message into 1500-byte packets, which get to the receiver in the same form.

3.3.4. Example: Ethernets as IP underlays

Frequently, an edge network is underlaid by a single Ethernet. An Ethernet provides point-to-point, broadcast, and multicast services on behalf of its IP overlay. We will begin by describing the IP edge network (§3.3.4.1), after which we will explain how Ethernets implement IP links (§3.3.4.2), and how Ethernet services are used by control protocols (§3.3.4.3).

3.3.4.1. THE IP EDGE NETWORK

There are several reasons for describing networks in which many of the hard problems of network design—routing, forwarding, and the resource allocation that results from them—have become trivial. Sometimes network experts want to talk about another problem of network design, so they hypothesize a network with these basic problems already solved. Sometimes, as in the case of IP networks with Ethernet underlays, designers want an overlay network that is very simple, because they intend for the underlay network to solve all the hard problems.

When most networking experts want to hypothesize a point-to-point network in which routing, forwarding, and resource allocation are all trivial, they use a “big switch” abstraction: a hub-and-spoke network whose hub is a forwarder so powerful that it can easily handle all the traffic in the network. Every packet is forwarded once by the big switch, from an incoming source link to an outgoing destination link.

In compositional network architecture, a trivial point-to-point network does not have a hub-and-spoke topology, but rather a fully connected topology. There is a virtual link between each pair of members; to send a packet to another member, the sender simply chooses the virtual link that goes to the intended receiver. The advantage of pairwise virtual links is that they are directly implemented by the Ethernet according to our precise definition of layering, which makes them as real as any other virtual link. A “big switch,” in contrast, has a fictional topology that is rarely found in any real network.

Figure 3.9 shows a session view of an Internet session spanning two edge networks and some transit networks. The members of the edge networks are user members, gateways, and some infrastructure servers accessible to user members (see §3.3.4.3). There are no forwarders in the edge networks, as there is a direct link between each pair of members, such as the links shown between user members and gateways. In the implementing Ethernet, each link is implemented by a session whose path traverses the network’s forwarders along its spanning tree. From this perspective, the Ethernets look most important, and the Internet is just a means through which machines connected to different Ethernets can interoperate.

[image:]
FIGURE 3.9. The Internet enables machines on different Ethernets to communicate.

Why is this such a common architecture? Because an Ethernet is easy to operate. To add or move a machine, one simply plugs in an Ethernet cable. There is no need to configure a forwarder with routing information, because the forwarder acquires the information by itself. There is not even a need to maintain a central directory mapping IP names to Ethernet names (see below). The catch is that the Ethernet works all these miracles by compromising on scalability, with relatively inefficient techniques such as MAC learning and flooding. As a result, the size of an Ethernet is limited—and we need the Internet to span enough Ethernets for the whole globe.

3.3.4.2. IMPLEMENTING IP LINKS

As just explained, an IP sender has a point-to-point virtual link to each IP receiver, implemented by a session in the Ethernet underlay. The Ethernet session is very simple. Referring to the Ethernet packet format in Figure 2.9, the source-destination-name pair serves as the session identifier, and the Ethertype field carries a code meaning that the overlay network is an IP network.

The session is not enough, however, unless the sender knows which of all its outgoing links/sessions to choose. For this the sending machine needs access to a directory. It uses the directory to look up the Ethernet name corresponding to its IP destination, from which it has the session identifier of the implementing session. The directory implementation is presented in the next subsection.

As will be shown in the next subsection, it is also useful for IP members to be able to broadcast to all other members of the IP network. For this purpose, the IP network has broadcast virtual links enabling each member to send to all other members (in addition to its point-to-point links). The broadcast links are implemented by the Ethernet exactly as the point-to-point links are; the only difference is that the broadcast link is implemented by an Ethernet broadcast session. In this session all the packets have destination FF:FF:FF:FF:FF:FF, denoting the Ethernet broadcast group, instead of the Ethernet name of a specific member.5

3.3.4.3. IP-OVER-ETHERNET CONTROL PROTOCOLS

This section presents two control protocols. One is an Ethernet protocol and one is an IP protocol, but both are closely related to the layering of IP networks over Ethernets.

First the Ethernet protocol: In Ethernets the directory is completely decentralized and distributed, with entries existing only in the caches of members that need them. When a member needs to know the Ethernet name of an IP member, it gets the name through the Address Resolution Protocol (ARP). ARP is an Ethernet request/response control protocol.

To get a new directory entry, an Ethernet member sends an ARP request message using Ethernet broadcast, so the destination name in the message is FF:FF:FF:FF:FF:FF. All members of the network receive it and compare the requested IP name to the IP name of their machine. If the IP name matches, then the member sends back an ARP response with both its IP and Ethernet names. The response need not be broadcast, as the responder knows the name of the requestor. As with routes obtained by MAC learning, directory entries can have expiration times so they must be refreshed periodically.

Now the IP protocol: In Chapter 2 we introduced the Dynamic Host Configuration Protocol (DHCP), an IP control protocol through which a machine can get an IP name and participate in an IP network without prior configuration. DHCP also allows a mobile machine to get a temporary local IP name in every new IP network that it connects to. We delayed presenting DHCP until now because it exemplifies the close synergy between layered IP and Ethernet networks.

Why is DHCP so useful? IP networks are designed for scale, and require a great deal of state in infrastructure members. Their design is not particularly friendly to mobility or plug-and-play operation. DHCP is useful precisely because many IP networks are layered on Ethernets, whick are friendly to mobility and plug-and-play operation. DHCP makes it possible for an IP network to make use of this Ethernet capability.

With DHCP, a new and nameless IP member communicates with one or more DHCP servers, each of which has a pool of IP names it can lend. The messages of DHCP are embedded in User Datagram Protocol (UDP) messages. The embedding of DHCP in UDP is selected by well-known UDP port numbers 67 (client to server) and 68 (server to client). Each DHCP session is a request/response message pair with a random “transaction identifier” acting as its session identifier. The destination of all DHCP packets is 255.255.255.255, which denotes the broadcast group of all IP members layered on the same Ethernet. Each IP member “routes” an outgoing DHCP packet by sending it on a broadcast virtual link (rather than one of its many point-to-point virtual links).

Figure 3.10 illustrates the DHCP protocol. The “discover” message simply initiates a session with all available DHCP servers. The nameless sender puts source name 0.0.0.0 in the packet. A server may respond with an “offer” message containing an IP name and a lease time—during which the member can use the IP name—of hours or days. Next the new member chooses among the offers it has received and responds to it with a “request” message to use the offer, echoing the information in it. The server responds to this with an “acknowledge” message, and the protocol is complete.

[image:]
FIGURE 3.10. Messages of the Dynamic Host Configuration Protocol.

Note that all four DHCP messages are broadcast, even though the new member knows the offering server’s name as soon as it receives an offer, and the server knows the new member’s name as soon as it receives a request. The request and acknowledge messages must be broadcast so that other servers with pending offers matching the same discover message can cancel them. In ARP, by contrast, there is at most one responder to each request, so only two members are concerned with the exchange, and the response is not broadcast.

3.3.5. Example: Layering the World-Wide Web on the Internet

In Chapter 2, we called the HyperText Transfer Protocol (HTTP) an application protocol of the Internet, making the World-Wide Web (Web) an Internet application. This is an acceptable but limited view. It is more interesting to think of the Web as a distributed system with nontrivial networking aspects, and in fact as an application-specific network layered on the Internet. Then we can use the network model to describe the Web, and also gain insight into how it could be enhanced with additional network services.

3.3.5.1. MEMBERS AND NAMES IN THE WEB

The members of the Web, as a network, are clients (usually browsers), servers, and middleboxes. The most common middleboxes are caches and load balancers. Other middleboxes perform tasks such as ad insertion in Web pages, enforcement of parental controls, and device-specific formatting of Web pages.

Names in the Web network are “domain names,” i.e., variable-length alphanumeric strings like example. com and www2.cs.princeton.edu (they are not case-sensitive, so Example. Com and WWW2.CS.Princeton.edu are equivalent). Not all domain names identify Web members, because some domain names, like com and edu, are much more abstract. The Internet Corporation for Assigned Names and Numbers (ICANN) is a global authority that registers domain names and ensures they are globally unique.

Domain names are human-readable and mostly location-independent (except for the use of country domains such as fr for France). They would be highly unsuitable as IP names, which must be processed by machines with great efficiency.

Just as in Named Data Networks (NDNs), it makes sense to think of a domain name as either (i) the name of a Web site or Web service, or (ii) the name of a member or group of members of some network. Just as in our treatment of NDNs, we take the latter view—not because it is more correct, but because it is more relevant to network architecture.

In the Web, client members do not have names; they do not need them, for reasons that will be explained below. Some middleboxes have names, while others do not. Servers have names, which in the simplest cases are unique. In other cases, domain names are anycast group names, so they name multiple servers simultaneously.

3.3.5.2. SESSIONS IN THE WEB

The session protocol in the Web is HTTP, which is a request/response protocol in which request messages travel from clients to servers, and response messages travel from servers to clients. A session can consist of one request/response exchange or a sequence of them, provided that both endpoints agree to continue the session after the first exchange of messages.

A request message, which is all text with carriage-return and line-feed characters in it, might look like this:

GET /wordsofwisdom/besteffort.html HTTP/1.1 Host: www.example. com Accept: text/html Accept-Charset: UTF-8

The first line, called the request line, contains the command GET to retrieve content, a path to the requested content within a server, and the version of HTTP being used. Subsequent lines contain header fields, in the form of colon-separated key-value pairs. The most important header field is the Host (destination) field containing the domain name. There are many other possible request header fields, all optional, specifying desired attributes of the content being requested. For example, the request message shown specifies the medium and character set.

The response to the request might look like this:

HTTP/1.1 200 OK Last-Modified: Thu, 09 Mar 2023 23:11:55 GMT Date: Mon, 01 May 2023 22:38:34 GMT Content-Type: text/html; charset=UTF-8 Content-Length: 173 Server: Apache/2.4.46 (Unix) (Red-Hat/Linux) Connection: close <html> <head> <title>Words of Wisdom</title> </head> <body> <p>In the Internet, "best effort" means never having to say you’re sorry.</p> </body> </html>

In the first line, the response 200 OK indicates success. Optional header fields show the date of content retrieval, content type and length in bytes, the date of the content itself, and the type of server on which it was stored. There are many other optional response header fields. Connection: close indicates that the server will end the session after sending this response, so that there can be no subsequent request in the same session. The response headers are followed by the body of the message, containing the content, which is a document in the HyperText Markup Language (HTML). An HTML document is displayed by a client browser as a Web page.

There are a few other request commands, such as PUT to store content instead of retrieve it. A PUT request has a body containing the content. There are other response codes, including numbers in the 400s and 500s to indicate errors. Responses with codes in the 300s are redirection responses; these responses indicate that the client should request the content somewhere else, namely at a different domainName/path pair found in a Location field of the message header.

HTTP sessions carry content of many types and subtypes, for example text/plain, audio/wav, video/mp4, image/jpeg, application/pdf, and application/zip.

3.3.5.3. LINKS IN THE WEB

For most Web sessions, there is a transient two-way link between client and server, created on the client’s demand. The Web is layered on the Internet, so each virtual Web link is implemented by a TCP session or QUIC session6 [49] in one or more bridged IP networks. Consequently a Web session, Web link, and TCP session are all in one-to-one correspondence and created/destroyed at the same time, and there is usually no reason to distinguish among them. The virtual link in the Web network has the properties of reliable, ordered packet delivery, because these properties are guaranteed by the TCP implementation of the link. Figure 3.11 shows how this might look for a modern Web site.

[image:]
FIGURE 3.11. An HTTP session in the Web, a virtual link in the Web, and a TCP session in the Internet are all in one-to-one correspondence.

§3.3.1 describes the most common form of attachment, in which a machine has one member of the overlay and one member of the underlay; for the underlay member to communicate with the overlay member on the same machine, all it has to know is the overlay. Modern Web sites are often deployed on large content-delivery machines, however, which host many Web servers simultaneously. Modern Web sites also use the Transport Layer Security protocol (TLS), embedded in TCP. So the TCP header has a well-known port as a primary overlay field, indicating that the overlay network is the Web. And the TLS session header has a “server name indication” field as a secondary overlay field, indicating a Web member.

In Figure 3.11, even before the TLS-in-TCP session is initiated, the client IP member C needs an answer to the question, “What is the attachment of example. com in my network?” To answer this question, it looks up the domain name in the Domain Name System, which is the directory for mappings from domain names to IP names (see next section).

In the Web, client members have only vestigial names. Figure 3.11 shows why they are not needed to deliver responses from the server to the client. A response message is sent only after the client has sent a request, by which time there is a two-way virtual link between client and server, and all the server has to do is forward the response onto the link. Client names could be useful for identifying and authenticating clients, but the default is that Web sites are open to everyone’s requests. So the Web network was designed for unnamed clients; when necessary, users of a Web site are identified by account names and authenticated with passwords, neither of which is a network mechanism.

The Web is a very simple network in which many network mechanisms are vestigial, but that might change in the future, as Web sites become richer and more performance optimizations are sought. For example, there has been no need for session identifiers, because of the one-to-one correspondence between sessions and links. In the newer HTTP Version 2, however, a single TCP session and virtual link can be shared by multiple asynchronous HTTP sessions, and there is a session identifier to match each response to its request.

3.3.5.4. THE DOMAIN NAME SYSTEM

The Domain Name System (DNS) is a distributed directory, implemented jointly by the bridged IP networks of the Internet. A Web client makes a query about a domain name to its local DNS server, which should be available in its edge network. The local DNS server is responsible for getting the IP name of the machine having that domain name, and sending it in a DNS response back to the client.

Obviously DNS is designed to work on a very large scale. It has a hierarchical structure in which DNS root servers have DNS records of the IP names of DNS servers for top-level domains such as edu, com, and country domains. Servers for top-level domains have records of the names of DNS servers for second-level domains such as princeton.edu. Second-level domains may also be subdivided into third-level domains such as cs.princeton.edu, and records in second-level servers point to third-level servers. This subdivision can go as deep as necessary to get subdomains of manageable size. Whichever servers form the leaves of this tree, they are “authoritative” DNS servers that know the IP name of each domain name in their subdomain. Some servers in this hierarchy are shown in Figure 3.12.

Hierarchical servers are one solution to the scale problem of DNS. The other solution is caching. In particular, local DNS servers start with few DNS records of their own, and quickly build up a cache of DNS records resulting from previous requests. For the most effective caching, they typically issue “iterative” requests, which means that the server is requested only to return the name of servers for the next-level domain (as opposed to returning a final answer to the request). For example, an iterative request to the edu server yields the name of the server for princeton.edu. The local server can cache this result and use it for subsequent requests in the princeton.edu subdomain. Even if the client really needs the IP name of xyz.cs.princeton.edu, and even if the edu server were able to respond with the IP name of xyz.cs.princeton.edu, the local server is much less likely to reuse it in the future. The response to a DNS request comes with a time to live (TTL) field indicating how long it can be cached before the information is refreshed with a new query.

[image:]
FIGURE 3.12. IP members responding to a DNS request for which there are no cached results. Numbers indicate the order in which messages are sent.

As shown in Figure 3.12, a client issues “recursive” DNS requests, which means that the server is requested to return the final answer. The local DNS server starts with the closest record in its cache, for example the name of the server for princeton.edu, and then issues iterative or recursive requests moving down the server hierarchy to the final answer. Needless to say, an authoritative server is allowed to return the final answer, even to an iterative request.

3.3.5.5. SOLUTIONS TO THE PROBLEM OF LOAD BALANCING

In this final section on layering the World-Wide Web on the Internet, we will show how the design of both networks (and the directory that unites them) provides for four solutions to the extremely important problem of load balancing—how to distribute the load of requests to a popular Web site over multiple physical machines. Our goal is to show you that architectural modeling can help make sense of the alternatives by exposing all their advantages and disadvantages, some of which might be forgotten otherwise. There can actually be more than four solutions, as some elements can be mixed and matched, but mixing only makes practical sense if all the elements fit the situation in which they are being used.

Solution I: DNS

A domain name in the Web can be a group name, which means that it names multiple Web servers. Each of these Web servers has its own IP name. Instead of simply replying to each request with the list of IP names, the authoritative DNS server for this domain name can choose a specific server when it answers each request.

Solution I works best if the authoritative DNS server is choosing replies based on something better than round-robin scheduling. If the Web servers are clustered close together, the DNS server could receive and keep track of measurements of server loads, so it could respond to each DNS query with the name of a lightly loaded server. This is a good solution for a content-delivery enterprise, because its business model makes the extra cost of monitoring server loads worthwhile. If the Web servers are widely distributed, on the other hand, the DNS server usually guesses the client location (from the IP name of the local DNS server) and chooses a Web server close to it.

Solution II: IP anycast

A domain name in the Web, which is a group name referring to a set of servers, can be mapped by DNS to a single IP name, which is also a group name. If the Web servers with this IP group name are widely distributed across the Internet, then IP anycast will naturally tend to route each packet with the group name as destination to the closest server with that name. That is, from each source in the Internet, BGP routing will tend to choose the shortest route to the group name, which will be a route to the closest server with that name.

Solution II has an important problem, which is the lack of guaranteed session affinity. Each packet of a session to a Web server is forwarded independently, and it is possible for IP routing to change mid-session. If the mid-session change involves routing to an anycast group name, then packets of the same session could be forwarded to two different Web servers. This would cause the session to fail.

Solution III: “Level 4” load balancer

A “Level 4” load balancer7 (Figure 3.13) is an IP proxy. In Solution III, a group Web name G maps to a group IP name g. Each server in the group also has its own unique IP name (x and y in the figure). In the IP layer, all packets to g are routed through the load balancer, which acts as a proxy. For each incoming session, the load balancer selects a server, and changes all incoming packets of the session to have the unique name of the server as destination. Return packets to the client need not go through the load balancer.

[image:]
FIGURE 3.13. A “Level 4” load balancer is an IP proxy. It directs each implementing session to a particular server by changing packet destinations to the server’s unique name. Contrary to the usual convention, arrows represent directional flow of packets in a TCP session.

In most uses of Solution III, the load balancer and servers all belong to a private network bridged with the Internet. So g is a public IP name, but the unique server names can be private, and the solution conserves public IP names (which are scarce in IPv4).

Solution IV: “Level 7” load balancer

Solution IV for load balancing is implemented in the Web network only (Figure 3.14). The IP layer implements links in the Web network exactly as described in §3.3.5.3, but is not otherwise involved in load balancing.

In Solution IV the domain name www.example.com, chosen by the client in the figure, is not a group name, but rather the name of a load balancer. The load balancer is a proxy—it accepts a Web session from the client, and waits long enought to receive the initial fields of an HTTP request. In the request, the GET line has a path to the requested content within the named Web site. The entire content of the site can be partitioned into some number of pieces (just two in the figure), with each piece or “shard” being stored on a single server. The load balancer determines from the GET line the server that has the requested content, and chooses that server to respond to the HTTP request. It implements this choice by initiating an outgoing session to the chosen server and joining it to the incoming session as a compound session. Once the outgoing session is set up, the load balancer will send the initial fields of the HTTP request, so the chosen server can see them also. After this, the load balancer simply forwards packets between the two sides of the compound session.

[image:]
FIGURE 3.14. A “Level 7” load balancer is a Web proxy. It discovers which shard of the Web content the client is requesting, and forms a compound session to the server that is storing the particular shard.

We now compare the four solutions. First we note that Solution II has a unique disadvantage (lack of guaranteed session affinity) and Solution IV has a unique advantage (content sharding).

Another relevant consideration is the conservation of scarce public IPv4 names. Solution I requires a distinct public IP name for each server, so it does not conserve them, while Solution II does. Solutions III and IV also conserve public IP names because both are used to balance load among clustered servers (see below). The servers need distinct IP names, but the names can be private to the edge network in which they are located.

Apart from these specific properties, the most important restriction on a load-balancing solution is whether the back-end Web servers can be located in a centralized cluster or distributed across the Internet. Architectural thinking reveals that all these aspects of a solution are related to server distribution:

	Some solutions simply do not work in some scenarios. Solution II does not work for a centralized cluster of servers, because BGP routing will not be able to distinguish them.

	In Solutions III and IV, all sessions go through a middlebox, while in Solutions I and II there is no middlebox. Middlebox solutions do not work well for distributed servers, because the middlebox may cause a “hairpin” in which the session path travels a long way to the middlebox, and then a long way to the chosen server, which may actually be close to the client! Middlebox solutions are fine for clustered servers, provided that the middlebox is located close to the servers.

	Even if a solution has no middlebox, it will not work well for distributed servers unless it takes the length of the path between client and server into account. This is why Solution I for distributed servers should use the source field of requests to make selections.

In summary, Solutions I and II are both suitable for distributed servers, and both are widely used. Solutions III and IV are the best for clustered servers.

3.4. Other examples of layering

In §3.3 we saw that the Internet spans a large number of smaller, heterogeneous networks by means of layering. In §3.3.5 we also saw that layering can enhance the Internet, as experienced by its users, with the Web services we all use many times a day. In this section the examples show other kinds of enhanced services, for performance (§3.4.1), for privacy (§3.4.2), and for security (§3.4.3). We also show how layering is used to help manage resources in high-speed transit networks (§3.4.4) and in cloud computing (§3.4.5).

3.4.1. Resilient Overlay Networks

In Chapter 2 we described Resilient Overlay Networks (RONs) as simple, well-documented examples of network ideas that are now ubiquitous in the Internet ecosystem, for streaming video and for reliable, secure proprietary networks used widely by businesses and governments.

Previously we described RONs as stand-alone networks. Obviously that is not the whole story—a RON is layered on the bridged networks of the Internet. Each RON packet is encapsulated in a UDP packet for Internet traversal, and RON uses UDP header fields to group the packets into sessions implementing RON links.

Recall that a RON is a relatively small network, and has a routing system that works on a small time scale. It monitors and reroutes aggressively to provide its members with the best possible performance. Knowing that its links are implemented by the Internet, we can see that it is able to respond to congestion and failures faster than Internet routing simply because it is smaller.

In Chapter 2 we noted a peculiarity: normally, a network that routes traffic away from congestion as fast as possible is prone to instability, as uncongested links rapidly become congested, and vice-versa. In contrast, a RON is stable simply because the volume of RON traffic is small compared to the volume of Internet traffic. So when RON changes the RON paths of various flows, even though that also changes the load on paths through the Internet, the affected traffic is a small fraction of total Internet traffic, and is unlikely to change the performance of those Internet paths.

Because the RON ideas are now in common use, it is important to note their limitations. A performance-enhancing overlay network can choose among a set of available Internet paths, but it cannot make the Internet perform better. Furthermore, as overlay networks proliferate, and the proportion of traffic carried by them rises, their performance gains must inevitably decrease (not to mention their effect on fairness and routing stability in the public Internet). These issues are a major stimulus for Internet evolution, as will be discussed in Chapter 4.

3.4.2. Tor

Tor [27, 73] is an overlay network allowing members of the public to use the Internet with a high degree of anonymity and privacy. Tor is quite complex, and this little section will only cover one aspect of it. A more complete explanation of Tor can be found in [98].

These days most Web sites are accessed with HTTP embedded in TLS embedded in TCP, so packet payloads are encrypted as they traverse the Internet. TLS also performs the function of endpoint authentication, so the client can make sure it is communicating with the real Web server. However, encryption has the limitation that it conceals packet payloads but not the network or session headers—for the obvious reason that the network needs the headers to deliver the packets. Any information available in the packet headers, most notably the IP names of the client and server, is plain for any observer to read. Also, the server knows the IP name of the client.

Layering Tor between the Web and the Internet solves this problem, as shown in Figure 3.15. At the top of the figure, in the Web, we now have HTTP embedded in TLS as the session protocol. As usual, TLS enables the Web client to authenticate the server. Also as usual, TCP in the Internet provides reliable, ordered packet delivery.

In between, the packets of the Web session also travel through the Tor network, where they pass through a randomly chosen sequence of proxies scattered around the Internet. Links in the Tor network are implemented by Internet sessions between the client and Tor proxies. As can be seen in the figure, it would be very difficult for an Internet observer to trace packets of the session from the client to the server. In particular, there are no packets with src = a and dst = w. The Web server will know that it is receiving packets from d, but not where they originated.

The Tor links are shared by many Tor sessions, which can implement many Web sessions with different initiators and acceptors. In the Internet, TLS embedded in TCP provides another iteration of encryption. Also, it enables Tor clients and proxies to authenticate the Tor proxies at the other ends of their sessions.

The additional complexity of Tor, not covered here, serves primarily to protect the user’s privacy from the Tor proxies themselves. As a result of the Tor session protocol, no Tor proxy knows more about the path of a Tor session than the identity of its nearest neighbors.

[image:]
FIGURE 3.15. The Tor network layered on the Internet. Members have the same names in both layers.

In Figure 3.15, the compound session formed by the interoperation proxy changes levels. This is a straightforward instance of subduction, which was presented briefly in Chapter 1 and will be explained in detail in Chapter 4.

3.4.3. Virtual local area networks

In §3.3.4 we explained how a customer IP network is layered on an Ethernet. This venerable architecture is limited to the size of a single Ethernet, which used to be about a thousand machines, and even now is limited to a few thousand. In the history of IP networks, it did not take long for the networks of large organizations, such as governments, universities, and business enterprises, to grow past this limit.

A common solution is virtual local area networks (VLANs), which make it possible to operate Ethernet hardware (consisting of cables and machines) as many independent Ethernets. Because each VLAN is isolated, all the size-limiting Ethernet operations—spanning-tree calculations, flooding for MAC learning, broadcast communication for the Address Resolution Protocol (ARP) and the Dynamic Host Configuration Protocol (DHCP)—are confined to individual Ethernets. This means that their overhead can be made acceptable, even if the physical topology is too large to operate as a single Ethernet.

The mechanism for making VLANs is conceptually simple: Each VLAN has a 12-bit identifier. There is an optional VLAN tag in Ethernet headers telling the hardware which VLAN a packet belongs to.8 Each forwarder is configured with the list of VLANs it participates in, while a user machine usually participates in only one VLAN. For example, the bottom level of Figure 3.16 shows a physical topology of forwarding machines, user machines, and cables. The names are the MAC addresses of the machines. The middle level of the figure illustrates two VLANs, each of which is an Ethernet, running on the physical equipment.

[image:]
FIGURE 3.16. A campus network with separate VLANs for students and administrators. IP names and MAC names with the same final digit name network members on the same machine. In the IP network, only the suffixes of IP names are shown.

In addition to limiting the scope of flooding and broadcasts, the other major motivation for VLANs is the isolation of Ethernets for security and administrative purposes. On university campuses VLANs are often assigned to different user groups (administrators versus faculty versus students), different departments, or different functions (real-time communication versus managed services versus unknown applications) [89]. In Figure 3.16 the VLANs shown are serving two user groups, students and administrators. This ensures that student machines will not receive broadcast messages or flooded requests intended only for administrators. In the two networks, red or gray lines are the spanning trees.

Just as in Figure 3.9, different VLANs/Ethernets can communicate only through an IP network layered on top of them. As shown in Figure 3.16, each VLAN is overlaid by an IP subnetwork with its own block of IP names. Each IP subnetwork is fully connected, and each subnetwork machine is also linked directly to one or more IP forwarders with 0.x name suffixes. The IP links for each group subnetwork are implemented by sessions in the corresponding VLAN.

Consider what happens when the student machine with names 1.3 and M3 accesses an administration server at 2.6 and M6. The IP path goes through IP forwarder 0.5, which can identify packets from student machines because their source names are in the student block, and apply appropriate security policies. The IP path contains three links, the first one implemented by the student VLAN, and the third one implemented by the administrators’ VLAN. Because of this layering, the physical path of the student’s packets is [1.3/M3, Md, M5, 0.4/M4, 0.5/M5, Mc, Me, 2.6/M6], even though there is obviously a shorter physical path.

As the figure shows, in this architecture, forwarders tend to participate in many VLANs. Partly this occurs because VLAN members can be distributed widely across campus. It also occurs because VLANs need extra links for fault-tolerance. For example, the administrator VLAN could reach its current members without Md, but has an extra forwarder so there is physical path redundancy.

The biggest disadvantage of operating Ethernet hardware as VLANs is that it is no longer plug-and-play, but requires a lot of configuration. On the other hand, much VLAN configuration can be delegated to the most suitable administrative offices, and the security benefits of VLANs are often indispensable.

3.4.4. Layered Multi-Protocol Label Switching networks

In §3.3.3 we mentioned that transit networks are often layered on MPLS networks, which provide very efficient forwarding along fixed network paths. This subsection will explain why IP networks are layered on MPLS networks, and why MPLS networks are even layered on other MPLS networks.

Consider the design of a high-speed IP transit network, for example connecting a set of cities in a large country. Imagine what would happen if the designers used BGP routing, or something similar, within this network.

	BGP routing would result, at each forwarder, in a single path to each destination. When the source and destination are cities, the amount of traffic between them can be very large. A single path might not be able to handle peak loads. Also, if there is only a single path, voice and video traffic will have to share it with less-time-sensitive traffic.

	When links failed, the failure would be advertised by neighboring forwarders, and BGP would have to converge on a new path avoiding the failed links. Relative to the demands on a high-speed network, this failure recovery could take a long time, possibly even measured in seconds.

If the transit network is layered on an MPLS network, on the other hand, these problems can be solved. The transit network can have multiple long-distance virtual links between cities, each implemented by an MPLS session along a different inter-city path. For example, in Figure 3.17 (which is the same network as Figure 2.17) there are three MPLS sessions from Chicago to San Francisco, referred to as 𝒱, 𝒲, and 𝒳. Different classes of traffic can be sent on different IP links; for example, the IP link implemented by session 𝒱 can be dedicated to voice and video traffic.

[image:]
FIGURE 3.17. An MPLS network. Sessions are referred to with red script capital letters, and their paths are drawn in red. Physical links are drawn in black.

For routing in the MPLS network, several options are available. One option is the distributed routing protocol OSPF. Another is a centralized algorithm designed for this purpose. For example, the paths of MPLS sessions can be recomputed periodically, based on session priorities, load measurements, and the capacities of physical links. In each computation, sessions are allocated to paths in priority order, so that when the whole capacity of a link is allocated to high-priority sessions, lower-priority sessions will have to use other, less-direct paths circumventing the busy link [82].

By now you might have realized that a “hierarchical” MPLS network as described in Chapter 2 is actually one (or more) MPLS networks layered on another MPLS network. This becomes obvious when you realize that in a hierarchical MPLS, an MPLS link can be implemented by an MPLS session. This layering can be used to solve the problem of slow failure recovery. For example, in Figure 3.17 there are two virtual MPLS links from Dallas to Phoenix, one implemented by session 𝒴, and one implemented by session 𝒵. When there is a failure of the physical link from Dallas to Phoenix, the network configuration would already know that 𝒴 and 𝒵 are backups for it, and could start using them to implement 𝒲 and 𝒳 in very little time.

3.4.5. Cloud computing

Cloud computing is all about thinking big, but it need not make our thinking hazy and opaque. Layering is one of the tools needed to decompose the complexity of cloud computing, so that each piece is manageable. In this section there will be two instances of layering IP networks on Ethernets. There will also be the very large-scale layering of many tenant Ethernet networks on an IP data-center network.

3.4.5.1. TENANT NETWORKS

Let’s start with IP edge networks owned by enterprises. An enterprise network may be the result of a long process of design and evolution to fit the needs of the business. For example, its allocation of the private IP namespace may reflect categories that are important to the enterprise.

The enterprise IP network is layered on an Ethernet. As usual, the IP network uses Ethernet broadcast and/or multicast services. The enterprise may also partition its physical resources by means of VLANs.

At some point the enterprise may make the decision to move its network from in-house computers to the cloud. Then the enterprise will no longer have to own and manage its own machines. Furthermore, the enterprise will be sharing cloud resources with other enterprises, and the cloud can give it extra resources—to cover failures and peak loads—more cheaply than the enterprise could provide for itself by buying extra machines that would be idle much of the time.

Within the data center of a cloud-computing provider, the enterprise network will become one of many “tenant” networks. More precisely, it will be a tenant IP network layered on a tenant Ethernet network (or networks, if there are VLANs). Rather than start over, the enterprise will want to move its network physically without changing it logically. In consequence, the cloud must support many tenant IP networks, each with its own copy of the private IP namespace, and many tenant Ethernets.

3.4.5.2. DATA-CENTER NETWORKS

A cloud provider runs one or more data centers. On the floor of a data center, there are many rows of hardware racks, each holding a number of machines and a top-of-rack forwarder.

Each machine is virtualized, which means that it contains a number of virtual machines (VMs). Each VM is a collection of resources comparable to those of an ordinary computer, including a network-interface card with its own Ethernet member and name. The virtualized machine also includes a “softswitch,” which is a forwarder linked within the virtualized machine to all the VMs.

In cloud computing, everyone regards this assembly as a hub-and-spoke network with the softswitch as the hub and the VMs as machines connected by the hub, regardless of the fact that they all exist within a single hardware box. So each rack has a tree-structured subnetwork whose members are the top-of-rack forwarder, softswitch forwarders, and VMs. One of these subnetworks is illustrated in the lower half of Figure 3.18.

[image:]
FIGURE 3.18. The topology of a typical data-center network, which is a fat tree connecting the top-of-rack forwarders. This network is also known as a “data-center fabric.”

The numbers involved in cloud computing are multiplied so many times that it seems best to estimate in powers of 2. The number of VMs per machine might range from 23 to 26. The number of machines per rack might range from 24 to 27, for an estimated total of 27 to 213 VMs per rack. Throughout this discussion, high estimates are drawn from [79].

When an enterprise edge network is moved from in-house machines to a data-center network, the state of each enterprise machine, including the states of its IP and Ethernet members, becomes a “VM image” of that tenant. This VM image can be loaded onto any VM in the data center. VM images can also migrate from one VM to another, when there is failure or planned maintenance, or if the allocation algorithm determines that another placement would be better. This means that the tenant’s IP and Ethernet members are mobile. It is impossible to explain a cloud’s behavior precisely without making a distinction between VM images, which are mobile, and the stationary VMs where they are temporarily located.

It might seem best for all the VM images of a tenant network to be placed close to each other in a data-center network, but this is not always possible or even desirable. There may be thousands of tenants, with some tenant always in the process of joining or leaving the cloud. Some hardware is always failing, and the resource needs of individual tenants are expanding and contracting with their workloads. With all these causes of change, the utmost flexibility in VM allocation is required, and it is normal for a tenant’s VM images to be scattered across the physical data center. Even when co-location is possible, it is less reliable, because then many VM images of the same tenant can be affected by a single hardware failure.

As a result of all these factors, it is critical for a data-center network to provide very high bandwidth communication among its top-of-rack forwarders. The favored topology for achieving this goal is called a “fat tree.” A fat-tree network is like a spanning-tree network, in that a path from one leaf node to another goes monotonically upward and then monotonically downward in a hierarchy. A fat tree differs from a spanning tree, however, in that the network is actually a forest of trees, and in this forest, for each pair of leaf nodes, there are multiple up-and-down paths. Figure 3.18 indicates the general layout of a fat-tree network connecting the top-of-rack forwarders, which are the “leaf nodes” in the previous sentence.

In a typical data center, the fat tree is large and dense, built out of inexpensive commodity components [37, 79]. As shown in Figure 3.18, the roots of the trees, at the top level, are called “spine” forwarders. Then there are one to three levels of “aggregation” forwarders between spine forwarders and top-of-rack forwarders.

Table 3.1 completes our size estimates for data centers. The table follows the hierarchy from top to bottom elements, showing in each line, for each element of an upper level, the number of corresponding elements at the next level down. All the aggregation forwarders are lumped into one level. Some lines also give cumulative estimates for an entire data center. Note that, to write powers of 2 as decimals, we adopt the conventions that 210 is one thousand, 220 is one million, and 230 is one billion.

TABLE 3.1. The number of virtual machines in a data center, approximate range

	
Upper Element

	
Lower Element

	
Ratio Range (powers of 2)

	
Cumulative (powers of 2)

	
Cumulative (decimal)

	
data center

	
spine fwd.

	
2 - 3

	
	

	
spine fwd.

	
aggregation fwd.

	
3 - 6

	
5 - 9

	
32 - 512

	
aggregation fwd.

	
top-of-rack fwd.

	
6 - 8

	
11 - 17

	
8 K - 128 K

	
top-of-rack fwd.

	
softswitch fwd.

	
4 - 7

	
15 - 24

	
32 K - 16 M

	
softswitch fwd.

	
VM

	
3 - 6

	
18 - 30

	
256 K - 1 B

A typical data-center network is an IP network using the private IP namespace. Names are hierarchical and location-dependent. Routing in a data-center network is very different from most Internet routing. Rather than finding a single path from a source to a destination, its goal is to distribute the traffic evenly across the many available paths from that source to that destination [37]. Multiple paths provide fault-tolerance as well as high bandwidth, of course. There are many ways to customize and optimize data-center routing, enabling a variety of approaches to the problem.

A data-center IP network is typically layered on one or more Ethernets, if only because the IP-over-Ethernet logic is built into commodity machines. Also, Ethernet services may be used for configuration purposes.

3.4.5.3. LAYERING TENANT NETWORKS ON A DATA-CENTER NETWORK: TOPOLOGY AND DATA STRUCTURES

In cloud computing, all tenant Ethernets are layered on a single data-center IP network. Clearly, the separation of concerns provided by layering is absolutely necessary. If there were no such separation, then the VMs of the data-center network would be named by (tenantNetwork, Ethernet-name) pairs. Routing in the data-center network would have to find paths among 256 K to 1 B members, despite the fact that member names had no relation to the network topology, so a particular member could be located anywhere in the network, and could move from time to time.

The following explanation follows the “Virtual eXtensible Local Area Network (VXLAN)” session protocol [53], devised by a number of device manufacturers and cloud-software companies. Their protocol makes it possible for a data center to support 16 M tenant Ethernets, identified with 24 bits, in contrast to the 4 K available with VLAN tags. This detail explains the name of the protocol.

In Figure 3.19, each machine of an enterprise network has now been virtualized as a VM image, containing both the IP member and the Ethernet member of the former enterprise machine. This VM image has been loaded onto a VM in a data-center network. The figure zooms in on two members W and X of tenant Ethernet T (their corresponding IP members, although also located on the VMs, are not shown). In the figure, Ethernet (MAC) names are in Italics, while IP names are in boldface. The network name T is in boldface Italics.

As Figure 3.19 shows, the tenant Ethernet has been changed systematically to reflect the assigned locations of tenant Ethernet members. Now every member of the enterprise Ethernet is a leaf node, connected only by a single two-way link to a member of the tenant Ethernet on its nearest softswitch.

[image:]
FIGURE 3.19. Layering of a tenant Ethernet on an IP data-center network. Table entries in red are filled in the first time W communicates with X.

The current locations of tenant Ethernet members must be available throughout the data center. The location of a tenant Ethernet member, represented by the Ethernet name and IP name of its adjacent softswitch, is stored in a large lookup table for the data center. Because of the heavy demands on it, including both updates and lookups, the table implementation must be fast and reliable [37].

In the tenant Ethernet, the links between VMs and softswitches are physical—they are implemented directly in hardware. The softswitch members, such as R and S, are fully connected to all other softswitch members by dynamic virtual links. These virtual links are implemented by the data-center IP network. Figure 3.19 shows exactly how this layering of tenant Ethernets on the IP network works. Within each softswitch we show three data structures. Forwarding tables are already familiar. The attachment tables and implementation tables are defined by the layering operator.

It is important to note that nothing in Figure 3.19 was invented for this example. Everything comes directly from the formal model of compositional network architecture, specifically from the formal definition of layering. This helps to show that the formal definition of layering can be applied to any situation, no matter how complex.

You may have noticed that, after these transformations, the topology of a tenant Ethernet is no longer a spanning tree. In cloud computing, for efficiency, the functions accomplished by flooding in ordinary Ethernets (routing, broadcast for ARP and DHCP, broadcast for applications) are accomplished in other ways. No flooding, no need for spanning trees. To illustrate this, the next subsection explains how routing and directory lookup (the purpose of ARP) happen in tenant Ethernets.

3.4.5.4. LAYERING TENANT NETWORKS ON A DATA-CENTER NETWORK: IMPLEMENTATION OF DYNAMIC VIRTUAL LINKS

Finally, we now show what happens the first time two tenant Ethernet members, located at specific VMs, communicate. In this case, W sends a first packet to X, which creates a virtual link between R and S. As information flows through the data center, red entries in the tables of Figure 3.19 are filled in.

First a packet from W, destined for X, arrives at R. R looks up X in the lookup table, and finds that the route to X goes through S. R creates a dynamic virtual link to S, gives it the local link identifier to-S, and installs an entry in its own forwarding table.

Next the virtual link must be implemented. The necessary state for this layering is found in the implementation send table, which associates the link identifier to-S with a header for packets of the implementing session. The destination IP name S was also obtained from the transaction with the lookup table, but in providing this information, the lookup table was acting as a directory, mapping the Ethernet name S to the IP name S. Thus the lookup table acts as both a centralized routing table and as a directory.

The actual header for the packet in the IP network is shown in Figure 3.20. As with the definition of layering, the important fields of the header follow exactly the formal model of compositional network architecture as explained in Chapter 2. The VXLAN session protocol is embedded in UDP, and the next-session-protocol field of the header is found in the UDP destination port. The only important attribute of the VXLAN session protocol is its header format, and the only important field in the VXLAN header is the overlay field, telling the network that the overlay is T.

When the packet arrives at S, its layering implementation creates a new dynamic link in the tenant Ethernet T with local identifier from-R, and fills in the implementation receive table to associate the incoming IP header with to-R in T. The encapsulated Ethernet packet is decapsulated and delivered to S in T. There local information is used to create a new entry in the forwarding table. Both softswitches also have sufficient information to create the reverse dynamic link from S to R.

[image:]
FIGURE 3.20. An IP packet header in which the VXLAN session protocol is embedded in UDP.

To simplify the presentation, we have eliminated some data present in the formal model but not needed in this case. The example could be optimized more. For instance, the Ethernet name of a softswitch should be globally unique and therefore can be the same in each tenant Ethernet. With this optimization, there is no need for an overlay index in a softswitch’s attachment table—which then only has one entry.

Although it has not yet been pointed out, the softswitches have all the information they need to enforce tenant isolation. For example, S would not forward packets to X unless they came through tenant network T.

3.5. Conclusion

This chapter has introduced the two major composition operators on networks, bridging and layering. There is one more network operator to come in Chapter 4, called subduction. Subduction is a particular way of combining bridging and layering—and it is well worth understanding, because it is the enabler of innovation and evolution in the Internet.

In addition to mechanisms for composing networks, there are two mechanisms for composing network services inside networks: protocol embedding, introduced in Chapter 2, and compound sessions, introduced in §3.2.3. Together, these five mechanisms put the “compositional” in compositional network architecture.

Several of the examples in this chapter, for example interoperation of heterogeneous networks and load balancing in the World-Wide Web, address problems that can be found in many places in network architecture. As such, they could be explored more deeply and generalized into patterns, although we have not taken the space to do it here. Most of the patterns in this book will be found in the next two chapters.

Composition is exciting because five mechanisms can be used to accomplish so many different goals. As this chapter has shown, the layering operator is particularly versatile. Chapter 4 will bring all the examples of layering together, comparing them and summarizing all the purposes that they serve.

1. Usually an edge network connects to the Internet through only one service provider. If it has more than one service provider, for redundancy, it is called “multi-homed.”

2. It would be more logical to call it a “joinbox” but, avoiding cultishness, we reuse the common term proxy.

3. In the same way, IP name 255.255.255.255 is a local broadcast group name in every IP network.

4. Strictly speaking, the directory should always be in the overlay, to preserve the dependency hierarchy. (So the overlay has knowledge of the underlay, but not vice-versa.) However, when overlay and underlay are very firmly coupled, preserving modularity to this extent is not crucial. Some important directories, to be presented soon, are placed in underlays for implementation convenience.

5. The IP edge network can also have internal multicast, implemented by the Ethernet in the same way. For multicast across the whole Internet, see Chapter 5.

6. QUIC is a newer competitor to TCP. The name is not an acronym, although it is always written like one.

7. Levels 4 and 7 are references to the Open Systems Interconnection network model [42], which was discussed briefly in Chapter 1.

8. Although a VLAN tag has 32 bits, only 12 of them can actually be used to identify VLANs.

4
The Real Internet Architecture

4.1. Introduction

Chapter 1 of this book discussed why the old “classic” model no longer explains the architecture of the Internet. Chapter 2 presented in detail how an individual network looks from the perspective of compositional network architecture. Then Chapter 3 presented the two principal operators for composition of networks, bridging and layering. Now we put these pieces together to describe the Internet architecture as it is today.

Chapter 1 defined a pattern as a recurring problem, along with a range of related solutions. In §4.2 through §4.5 the real Internet architecture is described in terms of four patterns. All are large-scale patterns, because the solutions involve composition of networks. The first pattern simply restates the design goal of the original, classic Internet architecture. In three subsequent patterns, new networks are added to the Internet ecosystem by means of layering. When the effects of layering and bridging must be combined, to get a rigorous and correct definition of the composition, we introduce the last composition operator: subduction. The real Internet architecture of today is the classic Internet architecture of 1993 composed—by means of layering and subduction—with many new networks, all for the purposes laid out in the four patterns.

§4.6 begins the discussion of current trends in Internet evolution, and how they might continue into the future. There are two major topics. First, the addition of many new networks to the Internet ecosystem has had a significant effect on Internet design principles, in particular the end-to-end principle. §4.7 evaluates this trend and updates the end-to-end principle for today’s Internet.

Our other concern is the evolution of the networks corresponding to the IP networks of the original Internet (as opposed to additional networks layered above and below them). §4.8 covers this form of evolution. First we describe how the old topological relationships are changing, and the possible effects on society. Next, because there will always be pressures to adopt new standard designs (beyond IPv4 and even IPv6), we discuss strategies for their incremental deployment. In both kinds of evolution, the benefit of compositional network architecture is to describe the alternatives clearly and precisely, so that engineers and framers of public policy can make informed decisions.

4.2. Layering for reachability

One network can be layered over multiple independent and unconnected networks, with different overlay links being implemented by different underlay networks. Because a network with any design can be layered on a network with any design, these underlays can be heterogeneous. With this form of layering, the single overlay network effectively connects the underlay networks, allowing their packets to reach each other through the common packet format and protocols of the overlay network. This is a very familiar pattern, as it is the founding purpose of the Internet. Examples are shown in Table 4.1.

TABLE 4.1. The architectural purposes of layering: Layering for reachability.

	
Purpose

	
Pattern

	
Sub-purpose

	
Overlay

	
Underlay

	to span multipleheterogeneousor unconnectednetworks

	one overlay,multipleunderlays

	
	base Internet

	
Ethernet, Wi-Fi, cellular,

	
	
MANET, and other edge

	
	
networks, PPP and MPLS

	
	
networks

	
security

	
campus IP

	
VLANs representing

	
network

	
separate user groups

4.2.1. The base Internet

Many people say that the Internet is a “network of networks.” In compositional network architecture, the entity they are referring to is formally defined as a set of IPv4 networks bridged together at many points, so they can be thought of as forming a global IP layer or level. Because we are now laying out the patterns of a more sophisticated Internet architecture, we will distinguish these networks by calling them the base Internet. In any session view within the Internet environment, the networks of the base Internet are the lowest-level IP networks.

Because the focus of the four patterns is on layering, the base Internet is treated in the tables as one network, even though it is actually many bridged networks. This convention is justified by the properties of bridging as given in Chapter 3—a set of bridged networks is behaviorally equivalent to one supernetwork containing them all.

Figure 4.1 is a topology view of the base Internet, similar to Figure 3.2. Reviewing, there are edge networks that carry packets only for their own members, and transit networks that carry packets for edge networks. Among transit networks, we distinguish access networks, which make up the outermost ring of transit networks, and high-speed core networks in the center. Transit networks are often called Internet Service Provider (ISP) networks.

The organization of the base Internet is a loose hierarchy of bridging relationships, based on two factors. First, when two networks are bridged together, they usually have either a peer-to-peer business relationship or a customer-to-provider business relationship. In the case of a customer-to-provider relationship, the provider is closer to the core than the customer is.

[image:]
FIGURE 4.1. Organization of the base Internet, with the path of a session through a chain of bridged networks.

Second, the networks of the core tend to have relatively few links per forwarder, but the forwarders have redundant connections to each other. Many links are long-distance and high-bandwidth. The edge and access networks are the opposite: there are many links fanning out to members, most short and with relatively low bandwidth. Not surprisingly, the middle-tier networks tend to show a continuum of these characteristics, from one extreme to the other.

Both these factors have an influence on security in the base Internet. The isolation of edge networks is important for their security. Because edge networks can only reach external destinations through access networks, access networks can impose security rules on them and also protect them from external attacks. Toward the Internet core, there is little information available to decide whether packets are legitimate or not. Furthermore, link speeds are so high that security features could be difficult to implement.

4.2.2. Virtual local area networks

All the same technical issues can arise, on a smaller scale, within a single large edge network such as the campus network in Figure 4.1. As explained in Chapter 3, its IP subnetworks for groups of users are layered on separate virtual local area networks (VLANs). Because the campus IP network connects them, each VLAN can be isolated and limited in size, which is important because the Ethernet routing and directory protocols depend on high-overhead flooding. The central IP subnet plays the same mediating role for the other subnets that the access network plays for the whole campus network; just as the campus network can be protected from other edge networks, each user-group subnet can be protected from other user groups.

4.3. Layering for routing scalability and flexibility

Routing is probably the most difficult task in networking—it ties all members of a network together, it is expensive, and it must often satisfy many requirements simultaneously.

The costs of routing include message overhead, space for routing data, computation time, and convergence delay. The costs of routing also include space in forwarding tables, which tends to be limited because these tables are often stored in expensive, high-speed, associative memory. Although these costs vary widely, they are always proportional to the numbers of members, links, and forwarding rules within the domain of routing, as well as to the frequency of network changes that affect routing. To improve routing scalability in a network or set of bridged networks is to control the costs of routing, especially as the scale of the routing problem grows—as it always does.

Different routing algorithms and protocols have different characteristics. For example: (i) OSPF depends on its participants having a common agreement on link costs, while BGP does not; (ii) OSPF can return multiple paths from a single source to a single destination, while BGP does not; (iii) IP routing requires aggregated, location-dependent names, while Ethernet routing does not; (iv) some forms of routing have session affinity, while many do not. What if the requirements on routing in a particular network are over-constraining, and no choice meets all of them? In these cases some additional flexibility must be introduced.

This section covers how layering is used in the Internet ecosystem to make routing more scalable and more flexible. First, §4.3.1 shows how layering decomposes the routing problem of one network into separate routing problems in an overlay and underlay. Then §4.3.2 and §4.3.3 give two different perspectives on the all-important topic of routing for the base Internet, one structural and one quantitative. Examples of this pattern are given in Table 4.2.

TABLE 4.2. The architectural purposes of layering: Layering for routing scalability and flexibility. Entries marked with an asterisk are covered later in the book.

	
Purpose

	
Pattern

	
Sub-purpose

	
Overlay

	
Underlay

	
	
	
reproduce enterprise

	
	
data-center
network

	
	
	
edge network in cloud,

	

	
	
	
allow flexible VM

	
tenant network

	
	
	
management at the

	

	
	
	
scale of a data center

	

	

	
	
	
scalable Internet routing,

	
	

	
	
	
link-state routing,

	
IP transit network

	
MPLS

	
to improve

	
one

	
multipath routing,

	
network

	
the scalability

	
overlay,

	
fast failure recovery

	
	

	

	
and flexibility

	
one

	
plug-and-play

	
IP edge network

	
Ethernet

	
of routing

	
underlay

	
membership

	
edge network

	

	
	
	
plug-and-play

	
SEATTLE overlay

	
SEATTLE

	
	
	
membership

	
underlay *

	

	
	
	
lower latency and

	
Resilient Overlay
Network

	

	
	
	
packet-loss rate,

	
base Internet

	
	
	
higher bandwidth

	

	

	
	
	
mobility

	
4G/5G mobile

	
base Internet *

	
	
	
network

	 

	 

	
multicast

	
IP multicast network

	
base Internet *

4.3.1. How layering decomposes the routing problem

There is a close relationship between layering and routing scalability. To understand this relationship, let’s start with a topology view of a network (Figure 4.2). On the “before” side, we see that the network has two kinds of member, called outer and inner members. The outer members need to communicate with each other, and the inner members enable this. Furthermore, the outer members communicate with each other only through the inner members. Often an outer member has only one two-way link into the inner set of members, in which case it does no routing or forwarding in this network at all—it just sends and receives packets on that one link.

On the “after” side of the figure, layering has been introduced. Now the machines on the perimeter have the same members as before, and also members of an overlay network. The members of the overlay network are fully connected by virtual links, which are implemented by sessions in the original, now underlay, network. The result of layering will be that routing and forwarding will be done separately within the two networks. The implications of this separation vary, depending on how it is used.

You have already seen several examples like Figure 4.2, the first one being the layering of IP edge networks over Ethernet networks. As in Figure 4.2, the IP edge network is fully connected, and its internal routing is vestigial. The real work of routing within the local area is performed by Ethernet routing, which does not require prior configuration of user members, and allows user members to move freely within the local area.

[image:]
FIGURE 4.2. Introducing layering at the outer edge of a network.

Another, enormously important, example of layering for routing scalability and flexibility is the layering of tenant Ethernets over a data-center network in cloud computing (§3.4.5). In cloud computing, a tenant IP network can be fully connected like many other IP edge networks. Alternatively, it can have a specific topology and application-dependent routing, sending packets through middleboxes according to various policies. Either way, it is layered on a tenant Ethernet in which routes (mapping each tenant Ethernet member to its nearest softswitch) are stored in a logically centralized high-speed lookup table. Routing within the data-center IP network balances a very large load across multiple paths through the fat tree, and has absolutely nothing to do with the routing concerns of the tenant IP or Ethernet networks. It is impossible to imagine cloud computing without such an effective separation of concerns.

4.3.2. Example: Inter-network versus intra-network routing in the Internet

In §3.4.4 we explained that layering an IP transit network on an MPLS network makes routing in the transit network more flexible, performance-sensitive, and failure-resilient than it would otherwise be. Routes within the transit network can be computed with a centralized algorithm, or with the distributed routing protocol OSPF. Here the same example is presented again, but with a different emphasis: on the details of layering, and on how the layering contributes significantly to the scalability of Internet routing via BGP.

As in Figure 4.2, we will hypothesize “before” and “after” situations. The “before” network, as shown in Figure 4.3, is an IP transit network of the base Internet. The members of the “before” network are labeled as inner or outer. In general, the outer members are gateways, bridged to other networks of the base Internet, while the inner members are internal forwarders or other infrastructure members such as servers. As in Figure 4.2, each outer member is linked only to a single inner member. This makes the network easier to draw, but is not a necessary restriction.

[image:]
FIGURE 4.3. An IP transit network of the base Internet (black) layered on an MPLS network (red, “after” view only).

In the “after” view of Figure 4.3, the IP transit network is layered on an MPLS network, and both networks are shown. The MPLS network has the same topology as the “before” IP network. In fact, all the links of the “before” IP network are now the links of the MPLS network instead! The IP network in the “after” view is different from before in the following ways:

	Its former links (whether physical or virtual) are replaced by new virtual links, implemented by the MPLS network.
	It has additional virtual links. In particular, the outer members are fully connected to each other, often with multiple links. The figure shows how two new IP links K and L are implemented, K by a session following a short path through the MPLS network, and L by a session following a longer path. The longer path serves as a backup for the shorter path.
	Only the outer IP members participate in global Internet routing by means of BGP. Also, in BGP routing, the outer members use only the new direct virtual links between outer members. BGP routing allows the outer members to reach all external destinations, and for external sources to reach all internal members by reaching an outer member. To reach any internal destination, an outer member uses an OSPF-computed forwarding table.
	To reach any destination within the network, an inner member uses its OSPF-computed forwarding table. To reach any external destination, an inner member simply forwards to its nearest outer member.

Given that a large number of Internet networks are layered on MPLS networks, the transformation from “before” to “after” causes an enormous reduction in the number of forwarders participating in global BGP routing. It also increases the degree of aggregation in global routing, because the blocks of names internal to the network need not be subdivided (an increase in aggregation corresponds to a decrease in the number of separate forwarding rules). Both of these changes contribute significantly to the scalability of Internet routing.

At the same time, internal operation of the network is streamlined. No inner IP member needs a large forwarding table with entries for all Internet destinations, as the outer members must have.

You might wonder why the “after” picture of Figure 4.3 is more complex than in Figure 4.2, and the separation of routing in the two networks is less complete. The difference is that, in Figure 4.3 “after,” the inner machines of the “before” network have members of the overlay network, rather than being absent from the overlay network as in Figure 4.2. The inner machines of an Internet transit network need to communicate through IP, even if their primary purpose is to host MPLS forwarders. All of the routing protocols we have mentioned, as well as the protocol for setting up sessions (“label-switched paths”) in the MPLS network, are IP control protocols.

4.3.3. A quantitative view of layered routing

Sometimes, when one network is layered on another, their routing problems are qualitatively different. In the simplest case, when an IP edge network is layered over a physical network such as an Ethernet or Wi-Fi network, the IP network may be fully connected, delegating all routing work to the physical network. In many other cases, however, the overlay and underlay have closely related goals, and the interaction should be understood quantitatively. In this subsection we summarize some research providing a quantitative model for this interaction, then show how it applies to compositional network architecture.

4.3.3.1. “LAYERING AS OPTIMIZATION DECOMPOSITION”

“Layering as optimization decomposition: A mathematical theory of network architectures” (LAOD) [21] is a survey and consolidation of an enormous body of mathematics on distributed optimization protocols. It provides a simple model for understanding what the protocols in a network do. In the model, a Network Utility Maximization (NUM) problem consists of:

	A set of sessions, with each two-way session being split into two one-way sessions. Sessions are indexed by i.
	For each one-way session, the transmission rate (bandwidth) xi. These transmission rates can be gathered into a vector X.
	A set of one-way network links. Links are indexed by j.
	For each link, the maximum bandwidth or capacity cj. These capacities can be gathered into a vector C.
	A routing matrix R with entries rji, referring to the use of link j by session i. In a model with single-path routing, rji is 1 if the route for i uses link j, and 0 otherwise. In a model with multi-path routing, rji can be a number from 0 to 1, indicating the fraction of session i’s load that travels through j.
	A utility function U(X) quantifying in some way the users’ satisfaction with the network, as a function of transmission rates. This function need not be linear! As transmission rates increase, they reach an adequate level, beyond which additional increases are less important to the users.

In the NUM problem, X and R describe a snapshot of the network. They are also optimization variables, meaning that they can be changed over time to make the network work better. Mathematically, “better” means maximizing U(X) subject to the constraint that

RX ≤ C

This is a simple formulation of a NUM problem, and it could be made more general (see [20] for more details).

LAOD states that the difficulty of solving a NUM problem can be decomposed in two ways. Both decompositions are illustrated by the example of TCP and IP. There are various versions of TCP with different algorithms for congestion control, all of which help solve the NUM problem.

The first decomposition is by “layering,” by which the authors of LAOD mean the layering of a session protocol on top of a network’s routing and forwarding, as in the classic model of Internet architecture. In this decomposition, the session protocol performs incremental updates to X (as if R were fixed), and the routing protocol or other resource allocation algorithm1 performs incremental updates to R (as if X were fixed). Routing works on a longer time scale than congestion control.

The decomposed problems are still dependent on one another, so the optimizations must be coupled in some way. If the users transmit too fast, and/or the network makes poor routing decisions, the result will be congestion and poor network performance; therefore the optimizations are coupled by imposing a cost for congestion on both sides of the decomposition. Thus the utility function to be maximized becomes

U′(X) = U(X) − cost(X)

Note that the session protocol and routing algorithm measure congestion in different ways, so a cost function may have multiple terms, each available on only one side of the decomposition. A session protocol can easily measure round-trip latency and packet loss. A routing algorithm is most likely to work with queueing delay and link utilization.

The second kind of NUM decomposition explained in LAOD is decomposition of a centralized algorithm to make a distributed algorithm. Decentralization is particularly effective in TCP congestion control—each endpoint adjusts its own send window (and therefore transmission rate), using a utility function it can evaluate for itself, and the distributed algorithm maximizes

∑ iU(xi)−cost(xi) [image:]

For example, a cost such as loss rate or round-trip delay need not be measured by network infrastructure and sent to endpoints via control signals. Much more accurately and efficiently, the endpoint measures for itself the loss rate or round-trip delay on the path that its packets are traveling.

Many real network protocols have been reverse-engineered as NUM problems. LAOD argues convincingly that the body of mathematical knowledge about NUM problems provides “a framework to understand issues, clarify ideas and suggest directions, leading to more understandable and better performing implementations.” In particular, mathematical knowledge sheds light on issues such as convergence, stability, reliability, optimality, and fairness, which can be fed back into improved protocol designs. These results suggest that it might be feasible to design networks whose aggregate properties can be guaranteed—even if performance bounds on individual flows cannot be.

4.3.3.2. LAYERED NUM PROBLEMS

Returning to network architecture, a NUM problem represents resource allocation and optimization within a single network, as practiced jointly by its user members (through session protocols) and its infrastructure members (through routing). However, it also explains the relationship between layered networks with respect to resources. When an overlay network is layered on an underlay network, the links in the overlay are implemented by sessions in the underlay. So the capacity of an overlay link is exactly the transmission rate of its underlay session. The NUM problems are related because C in the overlay NUM problem is X in the underlay NUM problem.

As an example of related NUM problems, consider once more a transit network of the base Internet, layered over an MPLS network as in §4.3.2. Figure 4.4 shows the layering with some annotations from the definition of NUM problems. This example does not consider how the customers of the transit network choose their transmission rates, so the time series of transmission rates Xo (o for overlay) is a given. In particular, Xoi is the transmission rate of an arbitrary session. The link capacities of the MPLS network are fixed, and are not shown in the diagram.

[image:]

FIGURE 4.4. One NUM problem layered on another.

This IP network does not need internal routing in the usual reachability sense, because its members are fully connected. It has, however, multiple links between the same pair of members, so for this network routing means choosing which of several links to use for each packet. In practice, there are two common ways to handle routing in transit networks layered on MPLS networks:

	The MPLS underlay can be fairly static, changing only at long intervals. This means that its routing Ru, which governs the path (red session) for each transit link, can be considered fixed. The IP overlay monitors the performance of its links, and routes its traffic over links in accordance with performance. In the figure, as its link performance changes, the transit network alters the fractions p and (1 − p) of Xoi sent on its two virtual links.

	The IP overlay can route its traffic to links according to fixed traffic classes and priorities. In this case p and (1 − p) will be fixed. The MPLS network monitors network performance and recomputes its routing periodically, which might result in changes to the red session paths. This is the method described in [82].

Not surprisingly, both methods solve the short-term optimization problem in only one network, rather than changing both simultaneously! In other words, they optimize on different time scales.

The situation is very different in another layered NUM problem, arising from the layering of a Resilient Overlay Network (RON) on the base Internet. In this example both networks are running routing algorithms and making changes concurrently, although RON routing operates on a much shorter time scale. Even more important than the difference in time scales, RON traffic shares the Internet with multitudes of other users, so its impact on the Internet’s transmission vector X is small. Although the NUM problem of the RON is dependent on the NUM problem of the Internet, there is little dependence in the other direction.

4.4. Layering for resource sharing or “slicing”

Examples of the third pattern for layering in the Internet ecosystem are given in Table 4.3. In this pattern, multiple overlays are layered on a single underlay. The overlays share the resources of the underlay, and the underlay “slices” its resources to allocate them to individual overlays. The most prominent example of resource sharing is the fact that all Internet-based application networks and distributed systems share the resources of the base Internet.

TABLE 4.3. The architectural purposes of layering: Layering for resource sharing. Entries marked with an asterisk are covered later in the book.

	
Purpose

	
Pattern

	
Sub-purpose

	
Overlay

	
Underlay

	
to share
or “slice”
resources

	
multiple
overlays,
one
underlay

	
	
application networks,

	
base Internet

	
	
distributed systems

	
reproduce enterprise

	
tenant networks

	
data-center network

	
edge networks in cloud

	
controlled network

	
experimental

	
VIrtual Network

	
experiments

	
networks

	
Infrastructure

	
evolution of the base

	
SCION, IPv4/6/N

	
Ethernet or

MPLS network *

	
Internet to a new

	
standard design

	

You may notice that cloud computing appears both here and in Table 4.2. This is just a difference in emphasis. Table 4.2 emphasizes that layering separates routing among VM images in an individual tenant’s network from VM-to-VM routing in the data-center network it is layered on. Table 4.3 emphasizes that routing in a data-center network is sharing resources among all its tenants.

In cloud computing, the usual goal is to provide ample capacity in the data-center network, so that the bandwidth usage of tenant networks need not be restricted. With this goal, the exact usage of each tenant is not necessarily monitored or controlled. The situation is different with the VIrtual Network Infrastructure (VINI) network, a wide-area network on top of which many experimental IP networks can be layered [12], and other testbeds. Because simultaneous experiments can exhaust the VINI network’s capacity, and because experiments require their own isolated resources for validity, VINI must allocate bandwidth to experimental overlays explicitly. The physical machines, as well as the links, are shared by members of all experimental networks; each member has a controlled share of CPU time on these machines.

4.5. Layering for enhanced Internet services

The final pattern for network composition in the real Internet architecture adds enhanced services to the base Internet, by means of layering. “Enhanced services” do things for their users that the base Internet does not, and often cannot, do; they also make application networks and distributed systems easier to build. You will read all about enhanced services in Chapter 5, which is devoted to them. For now, the examples in Table 4.4 should give you enough context.

TABLE 4.4. The architectural purposes of layering and subduction: Layering and subduction for enhanced Internet services. Entries marked with an asterisk are covered later in the book.

	
Purpose

	
Pattern

	
Sub-purpose

	
Overlay

	
Underlay

	
	
	
privacy

	
Tor

	

	
	
	
data-centric networking

	
Named Data Network

	

	
	
	
lower latency and

	
Resilient Overlay
Network

	

	
	
	
packet loss rate,

	

	
	
	
higher bandwidth

	

	
to provide

	
virtual edge

	
security, privacy

	
virtual private network

	

	
enhanced

	
or island

	
mobility

	
4G and 5G

	
base Internet

	
user services

	
network

	
mobile networks

	

	
	
	
mobility

	
Mobile IP network *

	

	
	
	
multicast

	
IP multicast network *

	

	
	
	
evolution of the base

	
IPvN *

	

	
	
	
Internet to a new

	

	
	
	
standard design

	

Networks providing enhanced services are usually layered in the Internet architecture above the base Internet and below application networks and distributed systems. This is why Table 4.4 lists the base Internet as the underlay for all entries. Nevertheless, users may benefit from multiple services simultaneously, so sometimes service networks are layered on each other.

§4.5.1 begins this section with a description of a common form of service network and how it functions. This discussion leads to the need for a third network-composition operator, which is explained in detail in §4.5.2. Finally, §4.5.3 pulls together themes from the entire book to give a full explanation of the example sketched briefly in Chapter 1.

4.5.1. Virtual edge networks

To use a network for enhanced services, the owner of a machine installs a member of the network—the necessary interface software, often called a “client”—on the machine. The user member of the new network can then communicate with its other members, as shown in Figure 4.5. Middleboxes in the new network can enforce restrictions on membership. There need be no geographical restrictions, however, as the members of the new network can communicate over virtual links implemented by the base Internet, regardless of where they are located.

[image:]

FIGURE 4.5. A virtual edge network, layered on the base Internet.

By design, the scope of the overlay network is far smaller than the Internet, and more is known about its user members. The overlay network can have its own namespace, middleboxes, and protocols. In this context, it is feasible for the overlay’s infrastructure to perform many functions that would be impossible at Internet scale.

The overlay network in Figure 4.5 is clearly a virtual network. It is also an edge network because, like edge networks in the base Internet, it carries packets only for its own members. Because of these two characteristics, it is a “virtual edge network.”

Ideally, sessions in virtual edge networks would have all their endpoints in the same network. They would be like local sessions in edge networks of the base Internet. And in some virtual edge networks, for example Named Data Networks or Resilient Overlay Networks, the purposes and session protocols are so network-specific that only members of the same network could possibly be endpoints of sessions through the network.

For many virtual edge networks, however, self-containment is not possible. One endpoint of a point-to-point application session wants the services of the virtual edge network, but the other endpoint does not care, is not willing to incur the cost of the service, does not have the right to use the service, or is simply not upgraded to participate in the service. As examples of these costs and rights, Tor is a virtual edge network that incurs heavy latency costs. Using 4G/5G cellular service requires paying for a service plan from a cellphone provider. Only members of a particular enterprise can belong to its tenant network in a cloud. Members of all of these networks need their services, but also need to communicate with other Internet members that do not use them.

The mechanism that makes this flexibility possible is the third network-composition operator, subduction. Subduction allows a virtual edge network to be both bridged with the base Internet and layered on it. It is not an exaggeration to say that subduction is the enabler of innovation in the Internet, because it makes incremental adoption of new services possible.

4.5.2. Subduction

Subduction is a geological term, as shown in Figure 4.6. The base Internet in Figure 4.7 is like the oceanic crust in Figure 4.6, both abutting (bridged with) the continental crusts (virtual edge networks) and sliding under them (serving as underlays for them). In the earth’s crust, subduction causes volcanic eruptions, earthquakes, and tsunamis. Despite the metaphor, our aim is to make networks with subduction better-behaved than that.

[image:]

FIGURE 4.6. Subduction occurs when one tectonic plate slides over the edge of another (U.S. Geological Survey).

4.5.2.1. A FIRST EXAMPLE OF SUBDUCTION

Our first example of subduction is shown in Figure 4.7, where a member A of the base Internet has a session with a member B of a tenant network in a data center. The tenant network is a virtual edge network, providing the service of using the data center’s resurces rather than resources owned by the tenant. A could be an ordinary home user, while B is a Web server.

[image:]

FIGURE 4.7. A session between an edge network of the base Internet and a tenant network, illustrating subduction.

For the moment, pretend that the red link labeled “shared link” is just two ordinary links. The upper link is a bridging link between the tenant network and the data-center network, and the data-center network is the first of a bridging chain in the base Internet. The lower link is just an internal link of the data-center network. We also know that the tenant network is layered on the data-center network. So the tenant network is both bridged with and layered on the data-center network, in two independent applications of composition operators, correct?

For a long time, we fooled ourselves into thinking so. The advantage of formalization, however, is that you cannot fool yourself forever. There are two problems with this idea, one concrete and one more abstract—but also quite important:

	The link between the top-of-rack forwarder and the softswitch in the virtualized machine is a single, physical link. It existed as such long before the tenant moved in; the top-of-rack forwarder has no reason to regard it as two links, and no way to selectively forward packets to one branch or the other.

	Recall that a set of bridged networks is behaviorally equivalent to one supernetwork containing them all. If the tenant network is bridged with the data-center network, then, with transitivity, the base Internet is layered on itself. Any programmer knows that circular dependencies are dangerous, and it is easy to imagine the analysis problems that could arise if layering is not a hierarchical relation. The formal definition of subduction includes selective constraints so that specific circular dependencies do not arise. As a result, all the properties of bridging and layering are preserved. Subduction produces network behaviors that cannot be achieved with bridging and layering, alone or in combination.

Now we know that this shared link is not just two ordinary links, but what is it? A shared link is a special link used only for subduction. At one end it is an ordinary link of an ordinary network member. At the other end it has two or more endpoints, all on the same machine. One endpoint is in an underlay and the other endpoints are in overlays. At the machine with multiple endpoints, for each endpoint, there is a predicate choosing which incoming packets go to that endpoint. The predicates for the multiple endpoints must be disjoint, so that any incoming packet flows deterministically to at most one endpoint. If an incoming packet matches no predicate, it is dropped.

The selection predicate for a branch of a shared link must apply to the packet header only. In Figure 4.7, incoming packets go to the tenant network if and only if their destinations are among the public IP names assigned to that tenant.

4.5.2.2. MORE EXAMPLES OF SUBDUCTION

Figure 4.8 shows another example of subduction. Again, we consider packets of a session traveling from A to B. This figure is different from Figure 4.7 because packets from A to B are leaving the overlay network rather than entering it. There are two shared links, labeled 1 and 2.

[image:]

FIGURE 4.8. A session between a virtual edge network and the base Internet, also illustrating subduction.

Depending on the purpose and logic of the overlay, the gateway member may simply choose an outgoing shared link for a packet and forward the packet to it. The receiver cannot tell if the packet came from the overlay or underlay.

Often, however, there is a bigger separation of concerns between the two levels. The overlay’s purpose has nothing to do with routing in the base Internet, and the gateway member’s only goal is to forward the packet outside the overlay. In the base Internet, the member on the same machine benefits from IP routing, and knows that link 1 is the best route to B. In this case, the mechanism of subduction allows the member of the overlay to say, “forward this packet onto any shared outgoing link,” thus delegating the choice of shared link to the underlay member. Either way, the choice of outgoing link is made by exactly one network.

If packets traveling end-to-end can leave an overlay to drop down to the base Internet, and if packets can also rise up to an overlay from the base Internet, then in some sessions, both can happen, and the shape of the session has a dip in the center.

To complete the list of all the ways subduction can be used, sometimes a network operator, for example the operator of a network of the base Internet, uses a virtual network to add services, and no session endpoints are members of the virtual network. The shape of all sessions through this network starts in the base Internet, rises up to the overlay, then dips down again to reach another endpoint in the base Internet. This creates a “virtual island network” as shown in Figure 4.9.

There will be real examples of virtual island networks in Chapter 5. For now, Figure 4.9 provides a slightly more detailed look at subduction. The red arrow shows the path of a packet among members of both networks. First the packet is forwarded by F1 onto a shared link. At the receiving machine, the selection predicate determines that it should follow branch A of the shared link to M1′.

[image:]

FIGURE 4.9. A virtual island network. Links joined by dotted lines are shared. The red arrow shows the path of a packet among members of both networks.

In the overlay, M1′ forwards the packet to M2′ on the illustrated link. This link is implemented by the underlay. So the packet is sent inside the machine on path segment B from M1′ to M1, where it is encapsulated in an underlay packet and sent in the implementing session. The path through underlay forwarders is drawn with a heavy red line to emphasize that it now has IP headers for both underlay and overlay networks, whereas on all other path segments it has only one IP header. At M2 the packet is received in the implementing session, delivered to M2′ via path segment C, and received on the implemented link. Finally, M2′ forwards the packet out of the overlay, on to a shared link to F4.

Virtual edge networks in the Internet are usually IP networks. They have to be IP networks to bridge with the base Internet! However, a few virtual edge networks such as Tor are not IP networks, but have interoperation proxies instead. This can be seen in Figure 3.15.

Table 4.4 does not distinguish between uses of layering and uses of subduction. The distinction depends on whether a particular virtual network contains all its session endpoints as members, which can be somewhat fluid and context-dependent.

4.5.3. Example: Provenance of the AT&T packet

As a final example of the real Internet architecture of today, we will now re-explain the example first presented in Chapter 1. This time the example is slightly more elaborate, and the explanation is more detailed. We point out how the example includes instances of all four patterns for layering (or subduction) in the Internet ecosystem. The example was inspired by the typical-but-mysterious packet from the AT&T backbone network [81], copied in Figure 4.10. Because the example is quite complex, we will explain it in two interlocking parts.

[image:]

FIGURE 4.10. Headers of a typical packet in the AT&T backbone network.

4.5.3.1. PART 1: APPLICATION AND ENTERPRISE NETWORKS

The first part of the example centers on an enterprise IP network, confined physically to an office building or complex. The enterprise network is an edge network of the base Internet. It runs a private version of the World-Wide Web, so that employees can use browsers to access data in enterprise servers. Both the private Web-based network and enterprise network are shown in Figure 4.11, although their composition is not yet explained. In Figure 4.11 and the next two figures, most of the networks are IP networks, and the non-IP networks are shaded gray.

A glance at Figure 4.11 shows that an employee has a session in the Web network with an enterprise server, and that the employee is currently sitting with his laptop in a coffee shop. The coffee shop has a physical Wi-Fi network (not shown), underlying an IP edge network (bottom left corner). In the coffee-shop network, the employee’s laptop has the temporary private IP name V1. It is connected via a NAT and transit networks to a member P5 of the enterprise network. P5 is a public IP name, so it can be reached from outside the enterprise.

[image:]

FIGURE 4.11. An enterprise edge network bridged with a VPN and transit networks of the base Internet. Dotted red lines show which link is being implemented by which session.

The problem with allowing an employee to access enterprise data from a coffee shop is security. Packets that are well-protected within the walls of the enterprise are now crossing the open Internet. To manage this security threat, the employee must use a virtual private network (VPN), which is a special-purpose virtual edge network with secure, long-distance virtual links. The enterprise network uses these links to connect different offices of the same enterprise, or to allow employees to join their laptops to the network even when they are not in the office.

As can be seen in Figure 4.11, the employee’s laptop has a member of the VPN, and the VPN is bridged to the enterprise network. It is so well-integrated with the enterprise network that its members have names in the private IP namespace of the enterprise network. Through these bridged networks, the employee laptop with name E1 has a TCP session with another member of the enterprise network E7. This session implements the dynamic link in the private Web network. As an extra security measure, the laptop’s enterprise name E1 can belong to this employee, so filtering within the enterprise network can ensure that this employee has authorization to access this server.

The VPN is a virtual edge network. Because it is layered on the base Internet as well as bridged with it at the enterprise network, it is composed with subduction. Note the shared link whose common endpoint is at E6. The VPN’s secure dynamic link is implemented by an ESP session in the base Interent, which encrypts the VPN packets so they cannot be read by eavesdroppers in the public Internet. The path from P5 to E7 lies within the walls of the enterprise, so it is physically secure.

Note the solid vertical red line in Figure 4.11. If a packet of these sessions were sampled on the physical link where the red line crosses it, its inner three headers would be the same ones shown in Figure 4.10.

In this example, the layering of the coffee-shop IP network over the Wi-Fi network is layering for reachability, the subduction of the VPN over the base Internet (including the enterprise network) is layering for enhanced services, and the layering of the application network over the base Internet (in some places indirectly, through the VPN) shares the resources of the base Internet with other application networks.

4.5.3.2. PART 2: 4G OR 5G MOBILE NETWORK AND ITS UNDERLAYS

The second part of the example concerns how cellular radio networks interoperate with today’s Internet. Because this is possible, people can use the Internet with their cellphones. Because this is possible, providers of cellular service can take advantage of the efficiency and global reach of the Internet.

A 4G mobile network is shown in Figure 4.12. Warning: Do not try to match up Figure 4.11 with Figure 4.12 yet—that requires a slight adjustment to be explained in §4.5.3.3. The important members of this network include an IP member in the cellphone itself, a “base station” (usually a cell tower), a forwarder (see below), and a NAT so that the whole 4G network can use the private IP namespace. This description of a 4G network is slightly simplified, and in its simplified form, covers 5G networks as well.

[image:]

FIGURE 4.12. How a cellular provider uses the Internet. Dotted red lines show which link is being implemented by which session.

Note that the network on the lower right of Figure 4.12 is like a tenant network in cloud computing, in that it is layered on the lowest-level IP network of the data center (its “fabric”). The actual fabric is not shown. The 4G mobile network is a virtual edge network layered on top of the tenant-like network.

Cell towers are widely distributed. As shown in the figure, it is often convenient for the service provider to centralize some members of the 4G network in a data center. The 4G link between a cellphone and its nearest cell tower is implemented by a radio network, of course. As an active cellphone moves, it retains its IP name V1.2 It also retains a link in the 4G network to a base station, but which base station changes. So the link from V1 to V2 in the 4G network may be short-lived, and frequently replaced by another link to another base station.

Meanwhile the centralized part of the 4G network must maintain its ability to reach the cellphone by the name V1. In the figure, there is a long-distance link between base station V2 and centralized forwarder V3.3 This long-distance link is known by forwarder V3 as a link toward V1, so packets for V1 are currently being forwarded by V3 onto it.

The long-distance virtual link is implemented by a GPRS Tunneling Protocol (GTP) session in the base Internet. “GPRS” stands for the General Packet Radio Service standard. The GTP protocol is embedded in UDP, as the headers in Figure 4.10 indicate.

In the near future, the cellphone may move from V2/F2 to another base station V2′/ F2′. This base station will have its own virtual link with V3. The part of the network located in the data center is keeping track of all this, so after the cellular handoff, it will be routing packets to V1 through the virtual link to V2′/ F2′. Routing changes to track the locations of cellphones happen much faster and at a much higher volume than routing in the base Internet could accommodate. So the primary reason why a 4G mobile network is layered on the base Internet, rather than simply having the base Internet connect cellular IP edge networks to other endpoints, is routing scalability. With the separation allowed by layering, the challenge of tracking cellphones does not affect the base Internet, while the base Internet does connect stationary cell towers to stationary data centers. Although the label “4G” is correct for 2013, when the packet was observed, everything in this example is true for 5G as well. The subject of mobility is discussed further in Chapter 5.

With respect to patterns in Figure 4.12, The 4G mobile network is layered over the cellular radio network for reachability, and also layered over the base Internet for routing scalability. Note that these two instances of layering are completely independent, as they implement different links in the 4G mobile network.

4.5.3.3. PUTTING THE TWO PARTS TOGETHER

Once they are put together, the two parts of the example look like Figure 4.13. To get this picture, we have put Figure 4.11 above Figure 4.12, and aligned them at the solid red lines. We have also replaced “employee laptop” with “cellphone,” “edge network in a coffee shop” with “4G mobile network,” and “coffee-shop machine” with two VMs.

[image:]

FIGURE 4.13. How the two parts of the example fit together. Note that the radio network and edge network are at the same level logically, although they are not drawn at the same level for lack of space.

Just as the VPN is composed with the base Internet by subduction, so is the 4G network (note the shared links at the egress points of both virtual edge networks). Also, the VPN is layered on the composition of the base Internet and the 4G mobile network. Below this picture, the IP transit network intersecting the red line is layered on two levels of MPLS network, with an Ethernet underneath. Also below this picture, the tenant-like data-center network is probably layered on a tenant-like Ethernet network and a data-center IP network.

You now have a complete explanation of the headers in Figure 4.10, observed in a packet sampled on the physical link crossing the red line. Note that the red line intersects three layered IP networks, accounting for the three IP headers in Figure 4.10. For yet another perspective, Figure 4.14 shows the path of this packet through the base Internet. The path goes through all the lowest-level IP networks shown in Figure 4.13.

[image:]

FIGURE 4.14. The path of the packet in Figure 4.10 through the base Internet. The red bar corresponds to the red line in Figure 4.13.

In Figure 4.14, if the data-center network and enterprise network were closer to each other, the two edge-to-edge legs of the path could traverse some of the same transit networks, maybe even some of the same physical links! For example, imagine in Figure 4.13 that there is a second red line intersecting the simple session with src = N4, dst = P5. Both red lines could conceivably pass through the same physical link in the same transit network. Yet, provided that layering is implemented correctly, there would be no confusion in this case. The packet’s header at the first crossing, as we know, is Figure 4.10. The packet’s header at the second crossing would contain an IP/ESP header with src = N4, dst = P5 instead of src = V1, dst = P5, and there would be no IP/UDP/GTP header between this header and MPLS networks.

4.6. Present and future evolution

In 1993, the classic Internet architecture described the Internet well. The classic Internet, characterized here as the “base Internet,” was assembled by bridging autonomous IP networks individually layered on heterogeneous physical networks, according to the pattern in §4.2.

Since then, the primary change in the Internet architecture has been the addition of many new networks for the purposes of improving the scalability and flexibility of routing, sharing or “slicing” resources, and providing enhanced services. These networks have been composed with the base Internet according to the patterns presented in §4.3 through §4.5. The composition operator applied is either layering or subduction. Subduction, especially, is needed at the “bleeding edge” of evolution, where different endpoints of a session may have different networking environments. Some of these additional networks, particularly networks for enhanced services, are called “limited domains” in [17].

It seems likely that this kind of evolution will continue, and possibly even accelerate, in the forseeable future. §4.7 evaluates this evolution, particularly in terms of Internet design principles such as the end-to-end principle. There is much to applaud, and some shortcomings to be worked on. Most importantly, this section updates the end-to-end principle for today’s Internet.

§4.7 assumes the presence of a stable, publicly available base Internet that provides near-universal reachability, and that is continually improving in capacity and scope. A public Internet with these qualities is most people’s idea of what the world needs, for technological progress and global accessibility.

With respect to this assumption, our picture so far of the real Internet architecture is a few years out-of-date. The base Internet is also evolving, in some good ways and in some ways that threaten the future of the public Internet. Evolution of the base Internet is discussed in §4.8.

4.7. Principles of Internet design

To get some perspective on evolution of Internet services, let’s look at the current situation through the lens of Internet design principles, in particular the end-to-end principle.

4.7.1. The original end-to-end principle

In general, the end-to-end principle [23, 78] states that the functions of the Internet should be minimized, so that basic service is efficient and reliable, and no one pays for services that they don’t use. According to the principle, endpoints reside in user machines, which are programmable and powerful enough to implement whatever enhanced communication services are needed. Furthermore, key examples show that user machines are often the best place to provide functions such as reliability [78].

In the original interpretation of the end-to-end principle, middleboxes are infrastructure members of the Internet. They are undesirable except when absolutely necessary (for example, to protect against flooding attacks), because they increase costs, reduce efficiency, and reduce reliability. If a middlebox fails, sessions passing through it may also fail. In contrast, when session endpoints on user machines implement communication services on their own, then session endpoints and communication services share the same fate with respect to hardware and software failures.

In today’s Internet ecosystem, middleboxes are common and they are everywhere. Some perform functions that cannot be implemented in endpoints [15]. This is widely regarded as a departure from the original end-to-end principle.

4.7.2. The new end-to-end principle

Compositional network architecture tells a different story about middleboxes in the Internet. Many middleboxes are members of virtual networks on top of the base Internet, whether layered directly or through intermediate overlays. These middleboxes include caches and load balancers in the World-Wide Web, proxies in Tor, forwarders in tenant networks in a cloud, servers in a VPN, and finally base stations, forwarders, and NATs in 4G or 5G networks. Security-oriented virtual networks have various middleboxes to enforce security policies (see Chapter 5).

Most of these middleboxes are trusted infrastructure members of their overlay networks. Nevertheless, all these middleboxes reside on machines that also host members of the base Internet. It is very important to note that these members of the base Internet are user members, not infrastructure members, of the base Internet. This can be seen in Figure 4.5, in which the middlebox, like the session endpoints, resides on a machine in an Internet edge network.

Consider two arbitrarily chosen user members of the base Internet, and a middlebox in a virtual edge network. How could it happen that packets between machines of the two user members pass through the machine of the middlebox? Only if at least one of the machines of the user members belongs to the same virtual edge network as the middlebox. So unless at least one of the user machines is configured to use the overlay’s services, the user machines are not affected by the middlebox’s cost, performance, or reliability. This shows that Internet users have at least some control over the costs and risks they incur through use of middleboxes.

Thus the new end-to-end principle is that the functions of the base Internet should be minimized, so that basic service is efficient and reliable, and no one pays for services they don’t use. This preserves the spirit of the original end-to-end principle, because users “opt in” to the presence of most middleboxes. At the same time, the end-to-end principle is updated to fit the real Internet architecture of today.

We believe that the current Internet ecosystem satisfies the new end-to-end principle fairly well. The base Internet provides global connectivity with a modicum of extra features, mostly for security. It will also be improved when some some of these middleboxes are recognized as belonging to virtual networks, and they are moved out of the base Internet.

4.7.3. The “tussle” principles

Other valuable principles come from the discussion of “tussle” in [24], meaning the ongoing contention among parties with conflicting interests, as it plays out in the Internet ecosystem. Two of the principles for dealing with tussle in the Internet, proposed by Clark, Wroclawski, Sollins, and Braden, are:

Design for tussle—for variation in outcome—so that the outcome can be different in different places, and the tussle takes place within the design, not by distorting or violating it. Do not design so as to dictate the outcome.…

Modularize the design along tussle boundaries, so that one tussle does not spill over and distort unrelated issues.

As a consequence of these principles, it is important to design for visible user choice.

Networks as defined in compositional network architecture are certainly an embodiment of these principles. They are modules, and different network designs offer variations in trade-offs and outcome. We have seen many network variations in scale and routing strategy, as summarized in Table 4.2. With respect to user services, users choose the virtual edge networks they use. Security is a good example of the possibilities: While the base Internet has only basic security mechanisms, a virtual edge network can offer a high level of security. It can have enrollment and authentication of all members, data integrity and confidentiality on all links, and verified infrastructure (as explained further in Chapter 5).

Nevertheless, the areas of contention discussed in [24] are diverse, and networks as modules may not be helpful for all of them. In Chapter 5 we will be exploring the mechanisms for adding communication services to networks in greater depth, and looking for additional opportunities to manage tussle.

4.8. Evolution of the base Internet

There are two trends in Internet evolution that have been noted by many observers. First and most obvious, IPv4 is slowly being replaced by IPv6 as the standard design of Internet networks. There are or will be movements to replace even IPv6 by alternative designs such as SCION (see §4.8.1.1) or by some future version of IP we will call IPvN. §4.8.1 explains how this kind of evolution takes place, in terms of compositional network architecture.

Second, there are now very large enterprises offering search, content delivery, online commerce, or social media for the Internet. These enterprises, called “hyperscalers,” rely heavily on data and run multiple large data centers. Increasingly, hyperscalers are building their own wide-area networks to connect their data centers with access networks in population centers. As a result, packets between most consumers and the hyperscalers’ data centers travel through private networks almost all the way. This trend has important ramifications for the public Internet, as discussed in §4.8.2.

4.8.1. Replacing IPv4 and IPv6

Eventually, IPv6 will replace IPv4 as the standard design of the networks of the base Internet. IPv6 changes little except the namespace, however, and there is still ample room for improvement. This subsection uses compositional network architecture to explain how a new standard for networks of the base Internet can replace IPv4 or IPv6 incrementally. Of course, economic incentives are of paramount importance; there are good discussions of incentives in both [47] and [72].

Our examples of new Internet designs are IPvN, which is some as-yet-unknown future version of IP, and SCION. SCION is significantly different from the IP family, yet a viable candidate for the standard design of Internet networks. This makes it a good example, because its differences means that some aspects of its evolution must be different from IP evolution.

4.8.1.1. SCION

SCION (named for Scalability, Control, and Isolation On Next-generation networks) is a candidate for the standard design of Internet networks. For any such candidate, its most important features must be its inter-network routing protocol (which is BGP in IPv4 and IPv6), its forwarding protocol (in contrast to IPv4 or IPv6), and its suite of session protocols. The SCION design replaces BGP and IP, but reuses the suite of IP session protocols, which significantly enhances its backward compatibility.

In SCION, associations of mutually trusting networks create a shared infrastructure for secure routing among themselves [11]. Packet sources (session endpoints) learn multiple routes to each destination, which they choose from or use simultaneously for improved network performance. Packet sources can also request reserved bandwidth allocations.

Furthermore, crucial properties of the routing protocol and security infrastructure have been verified [22]. These properties include:

	When networks concatenate path segments, the combined segments do not violate routing policies.

	Bandwidth allocation converges to the minimum allocation required.

	Certificates and public-key infrastructure are secure (various properties).

	There are no circular dependencies among subsystems.

For these reasons, SCION has significant deployment in the European banking industry. Enterprises that run SCION edge networks bridge them to SCION access networks in their cities. These cities are connected by a SCION core network [47].

4.8.1.2. SHARING RESOURCES AMONG OLD AND NEW NETWORKS

During a period of evolution, it is often necessary for an administrative authority to run both old and new networks on the same physical network. The physical network is typically an Ethernet or MPLS network.

There are two ways to do this. The old and new networks can be layered independently on the physical network, using the slicing pattern of Table 4.3. Or, because the old network is no doubt already layered on the physical network, the new network can be layered on top of the old network. This makes the new network an enhanced user service as in Table 4.4.

If the new network is an IPvN network, either pattern works. If the new network is a SCION network, on the other hand, slicing is strongly preferred. This is because SCION’s security and performance guarantees would be invalid if its packets were actually being transported on the old IPv4 or IPv6 network. For example, a flooding attack on the IP network could use up SCION’s expected resources. With slicing, the underlay network can give SCION a guaranteed share of its resources, independent of whatever is happening in the old IP network. And if the physical network is isolated, then it is not vulnerable to attacks on its routing. Even if there are routing attacks on the IP network through BGP, again, they do not affect the SCION network.

4.8.1.3. CREATING END-TO-END PATHS OF NEW NETWORKS

In the simpler cases of evolution, there are edge, access, and core networks of the new design, bridged together as in the current Internet. (Often the providers of these networks control deployment costs by sharing their physical networks between old and new networks, as in the previous subsection.) In these cases, there are end-to-end paths of homogenous new networks, and the new Internet simply co-exists with the old Internet. Current deployments of both IPv6 and SCION work like this.

However, IPv6 has been a very long time coming, and SCION is used by a relatively small collection of security- and performance-minded customers. It would be nice to have a gentler evolution path that might allow further Internet improvements (call them IPvN) to be disseminated more smoothly and rapidly, and without major changes to well-established economic structures. According to the thoughtful discussion in [72], this is possible if two constraints are satisfied. First, there must be some commercial advantage or economic incentive for a network’s administrative authority to deploy IPvN, even if it is not yet widely used. IPv6 is the proof that such incentives can exist: it gives service providers a vast new pool of public IP names to offer their customers. Second, any user must be able to use IPvN, even if the user’s edge and access networks do not offer IPvN service.

If there are economic incentives for deploying some IPvN transit networks, then the remaining problem is that there might be gaps in end-to-end paths where no IPvN network is available. This includes the gaps between isolated IPvN users and their nearest IPvN transit networks. These problems can be solved by layering IPvN on IPv(N-1) as shown in Figure 4.15. In this figure, there are gaps in IPvN span at the two labeled virtual links in IPvN. To fill these gaps, the machines at gap endpoints (whether session endpoints or IPvN gateways) must also have members of IPv(N-1). The gaps in IPvN are spanned by the virtual links, and these virtual links are implemented by sessions in IPv(N-1).

[image:]

FIGURE 4.15. Evolution from IPv(N-1) to IPvN. Virtual IPvN links span gaps in the physical coverage of IPvN.

Next we consider how the virtual links are set up, which requires the link initiator to have an IPv(N-1) name for the link acceptor. If the initiator has an IPvN name for the acceptor, then it can look up its IPv(N-1) name in a directory. This works for the virtual link on the right of Figure 4.15, because the acceptor is the destination of the IPvN packets, so its name is in the packet headers. For the virtual link on the left, however, there is no reason for the initiator to know the acceptor’s IPvN name, because the acceptor is merely a gateway to a (hopefully nearby) IPvN network. To solve this problem, [72] proposes an anycast group name aN − 1 representing a group of IPv(N-1) members on machines that also host IPvN gateways. Then any IPvN member can form a virtual link to an IPvN gateway by sending a session-initiation message to aN − 1 in IPv(N-1). Packets of the message will be routed to an IPvN gateway machine via IP anycast, and the gateway machine’s acceptance will carry its IPv(N-1) name, completing setup of the implementing session.

What if the advantages of IPvN over IPv(N-1) concern issues such as routing and resource allocation? Then gaps in end-to-end paths necessarily weaken these advantages. This is true when SCION is playing the role of IPvN, which is why §4.8.1.2 discourages layering SCION networks on IP networks. It might also be true for some future IPvN that replaces BGP with a better inter-network routing protocol.

Another mechanism for filling gaps in an end-to-end IPvN path is interoperation proxies. For example, an IPv(N-1) edge network can have an IPvN interoperation proxy, so that user members of the edge network can reach IPvN-only destinations, or reach IPv(N-1) destinations via IPvN paths. In this case, the only IPv(N-1) segment of the path is confined to the edge network, so that its performance and security are not important. Interoperation proxies are less efficient than the previous solution, however, because they require more per-session state and more packet processing.

4.8.2. Private IP transit networks

Some of the biggest enterprises in the Internet ecosystem, called “hyperscalers,” have multiple data centers to support search, content delivery, online commerce, or social media for the Internet. For some years these hyperscalers deployed virtual edge networks connecting “points of presence” in public access networks to their data centers. Internet users accessed hyperscaler services through these points of presence. The virtual networks included middleboxes to enhance performance (examples below), and also special routing to make advantageous use of bandwidth in the base Internet, as Resilient Overlay Networks do.

Now some hyperscalers have upgraded these virtual edge networks to wide-area transit networks, with their own physical links. These new transit networks in the base Internet are private, because they carry packets only to and from data centers of the hyperscaler. The relationship of a private transit network to public transit networks of the Internet is illustrated by Figure 4.16.

[image:]

FIGURE 4.16. Public and private paths between a client in an Internet edge network and a server in hyperscaler’s data center.

In the figure, the horizontal dimension of the diagram is used to suggest geographic distance. Most edge networks and access networks are relatively local, while core networks cover long distances. The private transit network is both long-distance and local to the hyperscaler’s data centers.

From the viewpoint of the public access networks in Figure 4.16, the private transit network is a peer. Public transit networks up the multi-level hierarchy from access networks, on the other hand, have provider relationships with the access networks. (Note that only one level of the multi-level hierarchy is shown in the figure.) Because private transit networks as peers to access networks are exceptions to the traditional hierarchy of bridging relationships (see §3.2.2), and tend to flatten the hierarchy, this new topology is sometimes called “the flat Internet.”

Even though Figure 4.16 shows two paths from a client to a hyperscaler server, under normal circumstances all traffic will follow the private path. An access network will choose this path because it means sending packets to a peer network, at no cost to the access network, rather than to a provider network, which incurs a cost. The private path will also be the shortest path, in terms of the number of networks traversed.

Client-server communication along the private path will be better than it would be on the public path. The private path passes through a middlebox called a “point of presence” sponsored by the hyperscaler; this middlebox can perform tasks such as caching, traffic aggregation, and compression to improve performance. Except for the path segment from the client to the point of presence, the private path is owned by the hyperscaler and not shared with any other Internet traffic. The path can have as much capacity as the hyperscaler decides. The path can also include other performance-enhancing middleboxes, including load balancers, and additional security features. These improvements, of course, are the reason for the existence of the private transit network.

The growing prevalence of private transit networks is a threat to the goal of a public Internet, primarily with respect to the concept of “net neutrality.” In its simplest form, net neutrality is the policy that the Internet should treat all applications alike. Net neutrality is good because it encourages innovation and prevents monopolies [85].4

Originally, the concept of “net neutrality” applied only to access networks, because their administrative authorities were the only agents in the original Internet ecosystem capable of violating it. The situation is different today, because hyperscalers—providers of particular applications and Web sites—are also capable of biasing overall Internet performance in favor of their own offerings, by providing private transit networks with extra resources and other performance enhancements. Another threat to the public Internet, posed by private transit networks, is that they can drain much of the traffic from the public Internet, undermining its economic base.

This threat has ramifications for public policy. With respect to public policy, the goal of compositional network architecture is to describe alternatives clearly and precisely, so that policy measures such as regulation can be focused and effective.

The best illustration of this point is the distinction, made in this chapter, between the base Internet and the remainder of the Internet ecosystem. Depending on the choices made at endpoints and in service networks, the general-purpose IP network on which an application runs directly may be the base Internet or some virtual IP network layered on top of it (as in Figure 4.13). All these networks may have different administrative authorities, which is where legal responsibility resides. Virtual edge networks can discriminate among, or behave neutrally toward, the applications that run on them. Networks of the base Internet can discriminate among, or behave neutrally toward, virtual edge networks—but cannot easily distinguish actual applications, which are hidden more deeply in the packets.

One possible measure to counteract this threat to neutrality is a proposal to provide some of the performance-enhancing services of private transit networks in the public Internet, so they are available to all users for all Internet uses [10]. The services are implemented with middleboxes in an overlay network, composed with the base Internet by subduction. The most significant obstacle to realizing this idea is not technical—it is the challenge of funding and administering the needed services as benefits to the public. Alternatively, there could be a market in which some enterprises provide sharable enhanced services, while other enterprises pay for them to compete better with the hyperscalers.

It is worth noting that [10] claims that the Internet suffers from architectural stagnation and is not extensible. It claims to be proposing a new Internet architecture that will (finally) achieve extensibility. It should be obvious that, from the viewpoint of this book, the architectural proposal is worthwhile but it is extending the current Internet’s architecture in the same way that many other services already do.

4.9. Conclusion

This chapter has shown that the classic Internet architecture lives on, but only in the edge networks and public transit networks of the base Internet. The current Internet ecosystem has evolved from the original Internet by the addition of many new networks with various designs. These networks are placed both above and below the base Internet in the layering hierarchy. They are composed with physical networks, the base Internet, application networks, and each other by means of layering and subduction. In each case, the layering or subduction operator has at least one of four given purposes, and follows at least one of four architectural patterns.

These changes require an update to our understanding of the end-to-end principle. We show how a new end-to-end principle preserves the spirit and purpose of the original. If explicit layering and subduction replace ad hoc tunneling and middleboxes, then the Internet ecosystem will maintain the new end-to-end principle increasingly well.

We also discuss the ongoing and potential evolution of the base Internet, both to a new topology with a bigger role for private networks, and to a new standard design for Internet networks. The goal of this discussion is to describe clearly and precisely what the alternatives are, so that engineers and framers of public policy can make informed decisions.

1. For example, another kind of resource allocation is scheduling access to a shared medium.

2. At least while it remains active and in the same region.

3. The example is simplified. In practice, there may be more than one hop between the base station and the centralized forwarder.

4. Nevertheless, it should be balanced with commercial interests and other social interests, such as the value to the public of free Internet services subsidized by commercial interests.

5
Patterns for Enhanced Network Services

5.1. Introduction

What is an enhanced network service within the Internet ecosystem? Our informal answer is given in terms of levels of abstraction, as shown in Figure 5.1. Applications and distributed systems have modules running on different machines, so they require communication sessions to achieve their purposes. For applications to satisfy their users, and not be too difficult to build, these communication sessions should satisfy certain performance and logical properties (as introduced in Chapter 2). The base Internet enables the endpoints of those sessions to reach one another, sometimes, with some usually unspecified level of performance. The gap between session requirements and base-Internet limitations is filled by enhanced network services.

[image:]
FIGURE 5.1. Levels of abstraction in the Internet ecosystem. At each level, there is a large collection of functions (black), and a purpose within the context of networking (red).

Because our definition of enhanced services relies on the definition of the base Internet, in §5.2 we give a specific definition of the base Internet, as a baseline for adding services in our examples. As befits the new end-to-end principle, our definition is suitably minimal.

In §5.3 we survey a wider variety of enhanced services than has been mentioned before. Service requirements are expanded with a new viewpoint—that enhanced network services are concerned with helping communication sessions succeed, despite the many problems and limitations inherent in networking. §5.3 points out some well-known obstacles to successful communication, and some of the services that have been used to overcome them. The new ones include support for power-limited devices, discovery services, availability services, keepalive services, inter-network multicast, firewall traversal, multi-path communication, and failure recovery.

Because enhanced services help sessions succeed, they are closely intertwined with the properties of sessions. §5.4 lays out the architecture of sessions, reviewing what has been said about sessions so far, and adding details that have not been relevant until now.

Of the five compositional mechanisms presented in this book, the three used to add services to networking environments are protocol embedding, compound sessions, and layering. We don’t count bridging because it is used primarily to extend the reachability of networks. We don’t count subduction separately from layering because its purpose is to allow both bridging and layering composition of the same networks, and is thus a supplement to layering in this context.

This chapter aims to connect services to architecture. §5.5 connects them in terms of patterns, where a pattern is a common problem and a range of related solution to it. In this section each problem to be solved is defined by a collection of services. The problem itself is how to add the services, incrementally, to a network ecosystem. The answer is one or more of the three composition mechanisms, including how and why it is used to implement new services.

The remainder of the chapter, §5.6 through §5.9, is organized around major service examples. For each service, we are looking for more detailed patterns that solve the related problems of how to implement the service and how to deploy its implementation in an existing networking environment.

5.2. Minimal definition of the base Internet

In this chapter, we take a minimal view of the base Internet (this is good for exposition, and also adheres to the new end-to-end principle). It is considered to be the bridged IPv4 networks of the base Internet as defined in Chapter 4, including the oldest and most basic transport and security session protocols, such as TCP, UDP, AH, and ESP (see Table 2.1). NATs are included in edge networks because without them members of edge networks with private names are not reachable. Stateful firewalls in edge networks are included because they provide the most basic level of security.

In light of the actual and potential evolution of the base Internet, IPv4 might seem like a strange choice. Why worry about the past if the future is coming soon? Widespread deployment of IPv6, at least, is inevitable.

Most importantly, whatever we choose as “the base Internet” for purposes of this chapter, it is just an example. The purpose of the chapter is to discuss communication services, how they can be implemented, and how they can be added to an existing network ecosystem. The architectural mechanisms that make this possible will not change, regardless of the standard design of the future base Internet. We hope you believe this assertion by now, as it is the point of the entire book!

Furthermore, no matter what the future base Internet looks like, there will be a need to enhance it with new and different communication services. The new end-to-end principle states that the base Internet should offer minimal services, to which services can be added by and for the users that need them. Even if the new end-to-end principle is abandoned, and the future Internet is bloated rather than minimal, it will not be sufficient because it will not be designed for tussle (as introduced in Chapter 4). The tussle principles state that the Internet should allow different outcomes between contending parties in different places. A bloated Internet design may be harder to customize, but enterprises and associations of users will do it if they have to, so that they can make their own trade-offs.

These arguments justify the notion that any definition of base Internet is acceptable for this chapter, because it is just an example. In addition, IPv4 is the best choice for this purpose. One reason is that it was designed by the Internet founders to be minimal, which makes it easy to work with. The other reason is that there is so much experience with IPv4 to draw on.

5.3. Obstacles and enhanced services

In this section we talk about session requirements from a new viewpoint, which is always good for unearthing things that might have been overlooked. There are many obstacles to successful communication—successful in whatever terms are most convenient for building applications. The new viewpoint is that enhanced services overcome obstacles to successful communication. So we look at the obstacles, divided into categories. The categories are not an actual classification, however, as many obstacles could fit into more than one category.

5.3.1. Endpoint limitations

There are various reasons why a machine, or a human user of a machine, might not be able to communicate through the Internet without help.

Device limitations. A device connected directly to a non-IPv4 network can only reach an Internet endpoint through an interoperation proxy, as explained in Chapter 3. This includes devices designed for the PSTN. There is a different kind of problem with small, battery-operated sensors and other Internet of Things devices. Often, these devices cannot execute Internet protocols—especially cryptographic protocols—because the protocols require too much computation or bandwidth.

Knowledge limitations. To initiate a session with an endpoint, it is necessary to know which real-world entity should be the endpoint, and also know the network name of that real-world entity. What if neither the user nor the user’s machine has enough knowledge? Services in a network can provide additional information, either within the session or by means of a separate query. Within a session, for example, services in the PSTN transfer calls to a specific department of a large organization, or to emergency contacts when the usual personnel are off-duty. And everyone uses Internet search engines, by means of separate queries, to find the Web sites they need, and their domain names.

Availability limitations. To communicate in the role of an acceptor, an endpoint must be available. Services in a network can provide limited communication when it is not. For example, services in the PSTN record messages for an unavailable call recipient, or else redirect calls to backup personnel.

5.3.2. Network limitations

This is a large category and can, of course, be made larger by expanding our expectations of what a network should do, and how well it should perform.

Failures. Network components can fail. Although networks must be designed to recover from failures, recovery can be slow. We have already seen a service, provided by a Resilient Overlay Network, that enables a small group of Internet members to improve the performance and recovery time of Internet service among themselves.

Performance limitations. Many services are intended to improve the performance of sessions, compared to how the network would perform on its own. Some common examples:

	Usually, the base Internet selects a single path for packets from a sender to a receiver. This path may have insufficient available bandwidth, even under the network’s normal operating conditions. Multipath TCP is a newer Internet protocol that explictly creates multiple subsessions to exploit the resources of multiple paths for the same TCP session.

	The most important way to improve performance for Web applications is caching. Web caches distribute Web content across the Internet, so that copies of it are available close to most requesting users. Web caches are found in the access networks of Internet service providers, and in content-delivery networks, which are either edge networks or virtual edge networks.

	Data can be compressed near its sender, and then decompressed near its receiver, to use less bandwidth for transmission across the network core.

Limitations to group communication. Moving from performance to functionality, the base Internet as defined above has some support for group services, but support is not comprehensive. Broadcast and multicast are only available in edge networks, because they are usually implemented by Ethernet underlay networks; inter-network multicast will be added with subduction in §5.7. Anycast service is primarily used for load balancing. As explained in detail in Chapter 3, the base Internet supports anycast through DNS and BGP, but these are not sufficient for all use cases. Other solutions employ middleboxes, both in the Internet and in the World-Wide Web overlay.

Limitations to device mobility. In the base Internet, a mobile device cannot maintain its name and ongoing sessions as it moves and changes its physical network attachment. This is because names in the Internet are location-dependent. §5.6 will present two completely different patterns for providing mobility services, along with an explanation and examples of the applicability of each.

5.3.3. Insufficient security or privacy

The minimal base Internet provides security and privacy through stateful firewalls and cryptographic session protocols. Beyond the minimal definition, traffic filtering to defend against flooding attacks is now common. This is far from sufficient for today’s threats to security and privacy.

Security. Enhanced traffic filtering is added to networks through middleboxes. For example, there are many specialized middleboxes to protect Web servers. These can reconstruct the TCP byte stream to scan for viruses. They can also protect against well-known attacks such as “SYN floods,” in which attackers initiate numerous TCP setup handshakes but do not complete them. This causes the server to create state and allocate buffer space for each requested session, at very little cost to the attackers.

Privacy. Unfortunately encryption is not sufficient to protect the privacy of network communication, because network headers cannot be encrypted—they are needed to deliver the packets! “Side-channel attacks” observe and analyze network headers, packet timing, and packet sizes to draw conclusions about network traffic that can be surprisingly specific. Protecting the privacy of users is further complicated by the fact that they may need protecting from the infrastructures of their own edge and access networks, especially in cases of censorship and repressive surveillance. Privacy services seek to obscure side-channel information in various ways.

5.3.4. Side-effects of beneficial network features

In engineering, trade-offs are everywhere. It is impossible to provide all possible benefits of networks at the same time, because some of them conflict with each other. This is, of course, the point of the end-to-end principle and the principles of tussle. However, even the minimal base Internet has behaviors that make some services difficult to implement.

Several restrictions can be traced to a single type of middlebox, stateful firewalls. These are the primary defense against attack for most edge networks. They protect their networks against the threats of the open Internet by prohibiting externally initiated sessions. In other words, the only packets from Internet gateways allowed into the network are those packets in sessions already initiated by internal members.

This causes two completely different problems. The obvious one is that it is difficult to create externally initiated sessions, even when legitimate and useful. This will be discussed in §5.9.

The other problem is that stateful firewalls must maintain per-session state. If a session ends with proper teardown signals, the firewall can release the session’s resources. There will always be sessions that are not torn down, however, if only because their endpoints fail mid-session. So, to conserve its own resources, the firewall must time out inactive sessions. Unfortunately, this has the side-effect of prohibiting long-lived, bursty sessions. “Keepalive” services can support such sessions, as will be explained below.

5.4. Session architecture

As befits their centrol role in networking, sessions are very diverse. In providing more details about the architecture of sessions, our paramount goals are generality and orthogonality. “Orthogonality,” originally applied to features of programming languages, means that the various aspects of sessions are largely independent, so that each aspect can vary without interfering with other aspects. Because orthogonality has been (mostly) achieved, mostly all aspects of sessions work together without fuss, and only the occasional constraint need be mentioned.

5.4.1. Session review

To review the basic facts about sessions, a session is a group of messages that go together from the viewpoint of its users, which are members of a distributed system or overlay network. A message is sent and received atomically at each session endpoint, from the perspective of the session protocol.

A session has identification that uniquely identifies its messages, both to the session endpoints and to the network. It can consist of a single session-identifier field, or of a session-identifier field plus endpoint names. Either way, this field or fields comprise the session identification. Session identification should have the same format for all messages in a network, and be unique in each context in which it is read.

While a network member is participating in a session, it is an endpoint of the session. An endpoint must have session state for the session, if only to recognize which messages are part of it.

A session and its state can be formed in two ways. It can be created autonomously and dynamically by its endpoints, as instigated by a setup message from its initiator. Or, it can be created by a mechanism outside the session protocol. For example, a network with a narrow purpose such as control of a factory floor can be configured with particular static sessions already in place. Even some dynamic sessions are set up by separate sessions that are themselves autonomous and dynamic. Mostly we talk about autonomous sessions, as they are by far the most interesting.

When sessions are dynamic, there must be some mechanism to enforce uniqueness of session identification. If session identification includes endpoint names, the initiator can ensure that the session’s identification is different from all its other sessions. If session identification consists of the session identifier only, the identifier can be chosen randomly (and it must be long enough to avoid collisions of the random numbers).

Routing in a network has session affinity, at least with respect to some sessions, when all messages in a session travel along the same path, through the same middleboxes, to the same endpoint.

Most properties of network services are properties of sessions. A session property is a service property, defined by a predicate on the set of messages in a session, annotated with attributes such as their senders, receivers, ordering, and timing. Examples are given in §2.6.

5.4.2. Broadcast and multicast sessions

5.4.2.1. GROUP COMMUNICATION

In the most general form of group communication, a group has a set of senders and a set of receivers. Every receiver has the group name assigned to it, in addition to its unique name and any other names it might have. There are anycast, broadcast, and multicast groups.

For an anycast group, the sender set and receiver set are disjoint, e.g., they are clients and servers. If the sender of a message is an anycast group sender, and the destination name of the message is the anycast group name, then the message is delivered to one receiver in the group. Thus anycast communication is inherently point-to-point.

Chapter 2 explained how an anycast setup message can be used to set up a point-to-point session with some member of the group as acceptor. If the implementation of anycast—whatever it is—has session affinity, then all messages of the point-to-point session from the initiator can continue to use the group name for the acceptor. Otherwise the acceptor must reply to the setup with its unique name, and the initiator uses the unique name as destination for the remainder of the session.

For a broadcast group, the sender and receiver sets are structural, for instance all the members of an Ethernet network, and usually the same.1 For a multicast group, there are no constraints, and the sender and receiver sets can overlap (or not) in any way. The senders and receivers of a multicast group are explicitly constructed and stored. As with anycast groups, the receivers have the group name assigned to them, in addition to any other names they might have.

If the sender of a message is a broadcast or multicast group sender, and the destination name of the message is the group name, then the message is delivered to all receivers of the group—with the exception that a sender that is also a receiver does not receive its own message. Because the only difference between broadcast and multicast services is how the senders and receivers of the group are determined, we will use allcast to refer to both of them at the same time.

As Chapter 2 explained, an allcast setup message can also be used to set up a point-to-point session with some member of the receiver group as acceptor. Unlike the anycast case, there must be some mechanism that chooses which receiver becomes the unique acceptor. The more common use of allcast communication, however, is to make allcast sessions.

5.4.2.2. ALLCAST (BROADCAST OR MULTICAST) SESSIONS

An allcast session is a session in which all messages, not just the setup message, use allcast delivery. These are true multi-endpoint sessions.

Concerning the definition of a message, if the message is allcast, it is sent once by the sender, and has replicas delivered to multiple destinations. From the perspective of each receiver, however, a replica of a message is simply a message. Note that a message used to retransmit lost data is a different message from the one that contained the original data, because the two messages are sent at two different times.

Two principles govern the exact definition of allcast sessions:

	Recall that in layering, a link in an overlay is implemented by a session in an underlay. Everything a link can do an implementing session must be able to do, or there will be artificial and unnecessary constraints on layering. Everything a session can do a virtual link must be able to do, for exactly the same reason. Therefore, because there are allcast sessions, there must be allcast links.

	In the formal model underlying compositional network architecture, a link must have only one sender, i.e., be one-way. If links can be two-way, then it is not possible to analyze reachability.2 In the formal model, a two-way point-to-point session or link is actually an association between two one-way sessions or links, respectively. Because of the same issue, allcast service must be implemented by a set of sessions or links, one for each sender in the allcast group.

Allcast sessions implementing allcast service are illustrated on the left of Figure 5.2, where A is the receivers’ group name, S1 and S2 are the unique names of group senders, and S2 is a sender as well as receiver. There are two sessions, one for each sender, with session identifiers D1 and D2.

[image:]
FIGURE 5.2. Allcast sessions implementing group A on the left, and corresponding allcast links on the right. On the right, d3, d6, and d7 are link identifiers local to their members.

Allcast sessions are implemented with message replication in the sender or in middleboxes. There is some latitude in the session protocols used for allcast sessions, but the protocol must not require that a sender keep different state for each receiver. For example, IP multicast uses UDP, with its minimal endpoint state. If a sender kept receiver-dependent state, the messages needed between different pairs of group members might soon diverge. If receiver-sensitive state is really required, the application programmer should split the session into pairwise point-to-point sessions.

On the right of Figure 5.2 the diagram shows two allcast links corresponding to the allcast sessions on the left. Broadcast links can be physical, in which case the medium itself is replicating the messages. Broadcast links can also be virtual, in which case messages are replicated by forwarders or middleboxes. Note that while sessions must have network-wide unique identifiers, all that is needed for links is an identifier at each endpoint, which is local to that endpoint and need only be unique there. Just as a local link identifier for a two-way link is shared by the associated one-way links in both directions, the same link identifier here is shared in two cases: (i) identifiers d3 and d7 are shared by incoming allcast links, of the same group, from different senders, and (ii) at S2, a member that is both sender and receiver of the group, d6 is shared by incoming and outgoing links of the group.

Allcast groups, sessions, and links that span multiple bridged networks are fine, provided that the bridged networks act as one with respect to the group: group names and the individual names of group members must be unique across the networks, and the networks must share knowledge of group membership. This will be illustrated by inter-network multicast for the Internet (§5.7).

5.4.3. Compound sessions

The most basic compound session is a chain of two simple sessions, where the simple sessions are joined end-to-end at a proxy. In the most common case, the chain is assembled all at the same time and in the same direction, meaning that the proxy accepts an incoming session and then initiates a corresponding outgoing session. Sometimes, however, the proxy joins two sessions it has accepted, or two sessions it has initiated. A session initiated by a proxy can reach another proxy, creating compound sessions chaining any number of simple sessions.

Just as simple sessions can cross network boundaries where there is bridging, so can compound sessions. And of course, interoperation proxies perform a special kind of bridging using their join tables instead of bridging links.

Sometimes, in a point-to-point compound session, it is useful to distinguish between “piecewise” and “end-to-end” signaling. With end-to-end signaling, the true endpoints are endpoints with respect to the session protocol, but the proxy is not—it does not take an active part in the session protocol. An example of this behavior is a network address translator, which changes names and ports in packet headers, but does little else. With “piecewise” signaling, a proxy is an active endpoint for both of its sessions. If a proxy joins two sessions it has initiated or two sessions it has accepted, then it must be doing piecewise signaling—without taking an active role in the session protocol, the proxy could not initiate a session all by itself, or accept a session all by itself so that the session is in the correct state for data transmission.

It is possible to have irregular multi-endpoint sessions, i.e., multi-endpoint sessions not formed by allcast. These sessions arise in voice-over-IP applications [91]. For example, in multi-person voice calls, a speaker can merge calls from different people into one conference, two conference participants can split off their own private conversation, etc. One characteristic of these sessions is that the concept of session identity can break down—sessions can split and merge. Because these sessions take us so far away from the secure formal foundations of compositional network architecture, they are prohibited in formally defined networks. Rather, these sessions must be created and managed by distributed systems that are not considered networks.

5.4.4. Protocol embedding

With protocol embedding, a session benefits from the services of several session protocols simultaneously. Layering offers the same benefit, but in protocol embedding the multiple session protocols are operating in the same network, and each packet has one network header and one source/destination pair—regardless of the number of composed session protocols. Protocol embedding is common in both IP networks and other networks of the Internet ecosystem.

Below, §5.4.4.1 gives an operational description of embedding. In this description, every session protocol has its own identifier for a session. Then §5.4.4.2 and subsequent subsections will explain why this is necessary, and introduce other nuances of protocol embedding.

5.4.4.1. AN OPERATIONAL DESCRIPTION OF EMBEDDING

Figure 5.3 shows how protocol embedding actually works. In this figure, the session endpoints (network members) are divided internally into three modules: a module implementing an embedded inner protocol, a module implementing an embedding outer protocol, and a module for network functions. The figure shows the workflow for a user message sent through the network.

[image:]
FIGURE 5.3. Workflow within endpoints for a session with protocol embedding. IX is a session identifier for a session of protocol X. MX is a message of protocol X, taking the form (S[IX, payloadDescriptor], payload). S[] denotes the session header, which may have other fields as well. A packet with outer protocol X takes the form (N[X], MX). N[] denotes the network header, which has a session-protocol field and other fields as well.

On the sending side, each protocol module receives a message at its upper interface, encapsulates the input message as the payload of a message of its own, adds a session header (and footer if required, but these are not shown), and sends this new message out its lower interface. When the message is received by the network module, it fragments the message to make smaller packets if necessary, encapsulates the resulting packets in the network header (and footer if required), and sends them out on a network link. On the receiving side, the network module re-assembles packets and then sends the message upward through the protocol modules. Each module decapsulates the message by removing its own header/footer and releasing only the payload.

In addition, protocol modules can do many other things. On the sending side, they can buffer a message before sending it, as the flow-control and congestion-control function in TCP does. On the receiving side, they can buffer messages before delivering them, as the reliable-delivery mechanism in TCP does. Note that because TCP is a protocol for two-way sessions, both endpoints play both sending and receiving roles.

A protocol module can generate its own control message even when it has not received a message from an upper interface. For example, a protocol including keepalive service can set a timer whenever it sends a message. If the timer expires before there is another message to be sent, the protocol generates a control message to keep the session alive. (Control messages seldom have real payloads, because the fields of the session header contain sufficient information.) A protocol module can generate replies to messages received, and can also absorb received messages if they are only for control.

Obviously protocol embedding is transitive, and can be extended to the composition of more than two session protocols.

Protocol embedding adds some nuances to the definition of message in §5.4.1. To restate the definition, a message is a semantic unit of one session protocol. The message is sent and received atomically from the perspective of the session protocol. In the case of protocol embedding, we can describe the messages of the protocols separately, or—when there is no risk of confusion—just use “message” to refer to messages of the outer protocol, in which all other messages are embedded.

5.4.4.2. SUBSESSIONS

Up to now it has been assumed that sessions seen by users are the same sets of messages seen by the network. With protocol embedding, this is no longer necessarily true. The messages of a single inner session, closest to the users, can be encapsulated and transmitted in the messages of multiple outer subsessions. The network sees the separate subsessions, not the session itself.

For example, stock traders use an embedding of OUCH inside SOUP3 inside TCP. OUCH is an application protocol for stock trading. SOUP provides reliable and ordered delivery of a sequence of OUCH messages, so all the OUCH messages of the sequence must be in the same SOUP session. You might think SOUP is unnecessary, because OUCH and SOUP are both embedded in TCP, which provides reliable and ordered delivery. However, SOUP provides this service in spite of the presence of TCP failures. So when a SOUP endpoint detects that its outer TCP session has failed, while its inner OUCH session is still ongoing, it generates control messages to start up a new outer TCP session. Then, just as TCP detects messages lost in transit during a TCP session, SOUP detects messages lost because of the break between TCP sessions.

In this example, from the perspective of the user, there is a single session of OUCH embedded inside SOUP. From the perspective of the network, however, there is a sequence of distinct TCP sessions; these TCP sessions are actually subsessions of the user session.

A session can also have multiple subsessions existing concurrently. Either way, here’s how to avoid confusing simple sessions and subsessions. A simple session is part of a compound session, and it carries all the messages of the session, although only part of the way from end to end. A subsession arises from protocol embedding, and it carries messages of the inner protocol’s session all the way from end to end, although only some of them.

Subsessions place an extra burden on the mechanisms of session identification. Consider what happens when a session with protocol embedding is set up, and then, some time after the setup, the outer protocol initiates a new subsession (sequentially or concurrently). At the acceptor, the outer protocol module receives a setup message with a different session identifier from the original session identifier. It acknowledges the setup message and starts receiving messages in the new subsession, containing embedded messages of an inner protocol. These messages are delivered to the inner protocol module. How does the inner module know that they belong to an existing session, rather than a new one? It knows by comparing the session identifier in the session header of the inner protocol to the identifiers of its other existing sessions! This is why, in the general packet format, each session header has its own session-identifier field.

5.4.4.3. PROTOCOL EMBEDDING AND COMPOUND SESSIONS

When protocol embedding is combined with a compound session, there is an extra degree of freedom, as shown in Figure 5.4. When a proxy performs piecewise signaling as in §5.4.3, it is acting as a protocol endpoint for some session protocol. In the presence of protocol embedding, there is a choice of which session protocols are participating in the piecewise signaling.

In Case 1, protocol P has the piecewise signaling, with a join table associating session identifiers i and j. Although protocol Q is embedded in P, there is not even a Q module in the middlebox, and the inner session with protocol Q and session identifier x is not even a compound session (although the outer session is).

In Case 2, protocol Q has the piecewise signaling and the join table, associating session identifiers x and y. In this case, from the viewpoint of protocol P, i and j are two independent sessions. Session i of P has session x of Q embedded in it, and session j of P has session y of Q embedded in it.

Case 3 is similar to Case 2, except that the simple session on the right does not even have protocol embedding, and the endpoint at c has no module for protocol P. This case allows interoperation between endpoints that need P to communicate successfully, and endpoints that do not.

[image:]
FIGURE 5.4. Three ways to combine protocol embedding with a compound session. In this figure, a single session is represented with three dashed arrows, each labeled with information from the packets’ network header or one of its session headers.

5.4.4.4. CONSTRAINTS ON EMBEDDINGS

There are some inherent constraints on the order in which certain protocols can be embedded. In this section we examine some examples to get a feel for these constraints. Of course, application protocols are embedded in all other types of protocols, because the application protocols are using their services.

One of the most interesting embeddings is also the most subtle: Should an encryption protocol be embedded in TCP, or should TCP be embedded in it? Both cases occur in practice: TLS is embedded in TCP, and in “transport mode,” TCP is embedded in ESP (the IPsec data encryption protocol). TLS is embedded in TCP because it depends on ordered delivery of data bytes. ESP does not depend on ordered delivery, at the cost of a slight reduction in security (see [98]).

Whenever sessions of a protocol are meant to persist while subsessions come and go, the persistent protocol must be embedded inside the subsession protocol. One example is that SOUP must be embedded inside TCP, because it is specifically designed to maintain inner sessions while managing TCP failures. Whenever an outer TCP subsession fails, it initiates a new subsession. Another example would be a privacy-preserving protocol embedded inside TCP. It would periodically tear down the existing TCP subsession and start a new one, just so that surveillance in the network might not observe that the two subsessions are carrying packets of the same session (see §5.8 for more details about privacy).

Finally, some constraints on embedding are artificial and unnecessary. It is difficult to construct sessions in an IP network in which the outer protocol is not TCP or UDP, if only because these protocols have the only form of session identification recognized by IP forwarders and middleboxes. Because of this, ESP and QUIC sessions must be embedded in UDP, even though there is no functional reason for it.

5.5. Comparison of mechanisms for adding services

The first and most basic question to ask about adding enhanced services is, “Who wants to add them?” In this section, for simplicity, there are only two answers. One answer is that the administrative authority of a network wants to add services to its own network. The other answer is that an association of network users wants to add services for their own use. In both cases, “the network” is by default the base Internet or one of its networks. In more complex cases, however, the network may itself be a virtual edge network, or the base Internet composed with a virtual edge network by subduction.

The “association of network users” is also open to various interpretations. It could be a voluntary peer group. It could also be an enterprise wishing to provide and sell enhanced services to actual users.4

As explained in §5.1, there are three compositional mechanisms used to add services to a networking environment: protocol embedding, compound sessions, and layering. These mechanisms can all be employed by associations of users (or network administrations acting like them). In addition, there is one non-compositional mechanism, which is routing and forwarding in the network itself. This one can only be employed by the network’s administration. In this section we turn the mechanisms into patterns for solving problems. Each problem is a cluster of service requirements, and the solutions are the mechanisms that can be used to satisfy these requirements.

This section shows the effort we have put into defining the smallest possible set of extension mechanisms, each being defined with the greatest possible generality. This matters because of the promise made in Chapter 1, to use the modularity of networks to find “repeated mechanisms” (“functions” in the original statement) so that a few well-engineered implementations could replace many idiosyncratic implementations of the same mechanism. This is the only way to make network software simpler without losing functionality. In other words, we are not answering the question, “What are all the ways to extend the Internet ecosystem, incrementally, with each particular service?” Rather, we are answering the question, “How can all services be added, with good performance and efficiency, with the fewest different extension mechanisms?”

5.5.1. Services requiring a session protocol

A new session protocol can add to a network all the message fields in the session header, and all the message-processing in its implementation modules. Considering the example of TCP and UDP as transport protocols, it is easy to see that a choice of session protocols allows users to choose different session outcomes with respect to the trade-off between reliability (TCP) and low latency (UDP). In other words, a choice among session protocols is a way to allow for tussle without distorting network architecture.

Because of protocol embedding, it is relatively easy to add a new session protocol to a network. For example, many IP application protocols are embedded inside TCP. There are two requirements: software for the protocol implementation must be running in the session endpoints, and the session endpoints must have the ability to select the new protocol. Software for common networks such as IP networks and Ethernets is installed in machines as parts of operating systems, but this can be supplemented with system updates and downloads of other software.

In the most general case, the member of an overlay network or distributed system chooses the inner session protocol when it requests initiation of a network session, and each inner protocol selects the next-outermost session protocol or none. This is illustrated in Figure 5.3, where each sending module chooses an outer protocol or network transmission, as denoted by “ send… to X.” As a nice example of choice in action, when the control protocol DNS is sending a response to a query, the response usually fits into one IP packet, and DNS embeds the message in UDP. Sometimes, however, the response is long and takes up several packets; in this case, DNS initiates a TCP session and embeds the response message in it. Preserving protocol choice allows associations of users, as well as network administrations, to add new session protocols.

5.5.2. Services requiring middleboxes

Middleboxes, including but not limited to proxies, can augment the state and processing in protocol endpoints in many ways. In considering how middleboxes can enhance services, the most important issue is how the middleboxes are inserted in the paths of the sessions they serve. They can be inserted by the network’s routing and forwarding, or by means of compound sessions. These two alternatives are illustrated in Figure 5.5. Either way, of course, resources for the middleboxes themselves must come from the authorities or users that want them.

[image:]
FIGURE 5.5. Two ways to insert a middlebox in the path of a session.

5.5.2.1. MIDDLEBOXES INSERTED WITH COMPOUND SESSIONS

Proxies and compound sessions have a chicken-and-egg relationship to each other. The session initiator sends a setup message to the name of the proxy. The proxy accepts the session, initiates another session to another destination, then joins the two, forming a compound session. Was the purpose of the proxy to form the compound session, or was the purpose of the compound session to insert the proxy? Either is possible. In the latter case, the middlebox performs other useful functions, and its proxy behavior is only the means to an end.

Proxies have an important problem to solve: where do they get the name of the next proxy or accepting endpoint? There are many solutions to this problem, including the following:

	The session initiator can include a list of proxy names, ending with the acceptor, in the session header or payload. This solution requires the support of the session protocol. For example, when the session protocol Dysco [92] running in a proxy receives a session setup message, it accepts the session, initiates a new session to the next proxy on the list, and joins the two sessions.

	The proxy can also get a new name from the initiator in a more dynamic way. For one example, the session protocol can allow the proxy to query the user. For another example, a Web cache might accept a TCP session carrying an HTTP request, and complete the entire setup handshake to receive data. It then reads enough data to determine the requested Web object. If the Web object is cached, the cache sends the object. Otherwise the cache looks up the domain name, initiates an outgoing session to its IP name, and relays all the request data already sent.

	One of the services of the proxy might be to choose the session acceptor, using knowledge it has but the initiator does not. This is the behavior of a load balancer, which knows about the available servers and their current loads.

Usually, as in Figure 5.5, a proxy uses its own name as the source name in an outgoing setup, so reverse packets also pass through the proxy. This is not absolutely necessary, however. The load balancer in Figure 3.13 need not be in the path of return packets, so it leaves the source name unchanged, and reverse packets go directly back to the session initiator.

If a proxy does use its own name as the source name in an outgoing setup, then inserting proxies for the purpose of forming a compound session enhances privacy by hiding the end-to-end path of the session. On the right of Figure 5.5, no simple session has the names of both a and c in the network headers of its packets. If there were a second proxy, the middle simple session would have the names of neither. Recall from §5.4.4.4 that a protocol can exploit subsessions to preserve privacy, by dividing session packets among multiple subsessions so the whole session is not apparent. Here we are saying that simple sessions can preserve privacy in an analogous way—session packets travel in multiple simple sessions along their path, so that the whole session is not apparent.

5.5.2.2. MIDDLEBOXES INSERTED BY ROUTING AND FORWARDING

The administrative authority of a network can adjust routing and forwarding in the network to insert middleboxes into the path of session packets. The simplest and most common example is that network address translators are inserted in packet paths by routing (see Figure 3.5). A NAT is a proxy, so it forms a compound session. Although the NAT must be in the session path in both directions, the reverse direction does not require special routing, because the NAT changes the source name in the forward direction to its own name. This is the destination name in return packets, so they come to it by normal routing and forwarding.

For a more complex example, consider the enterprise network in Figure 5.6. Enterprise networks are often designed to carry out business functions by steering packets through chains of middleboxes. This figure is based on Figure 3.13, which was a session view containing an edge network with Web servers and Level 4 load balancing. Figure 5.6 shows the path of the same TCP session with packets passing through other middleboxes as well as the load balancer.

[image:]
FIGURE 5.6. An enterprise network that steers packets through middleboxes. The intrusion detector drops suspicious packets. The smartphone formatter reformats Web pages for better display on a smartphone.

This elaborate path is created by customized IP routing and implemented by IP forwarding, as in [14, 70]. The same packet can pass through a forwarder multiple times, and the forwarder needs a different forwarding rule for each time. For example, the same client packet enters the middle forwarder three times. Each time its history is determined from the input link, and, based on its history, it is forwarded out a different output link.

Routing for middlebox insertion is even more complex if there are multiple instances of the same type of middlebox, to handle heavy loads. The middleboxes are often stateful, which means that all packets of a session (or at least all packets in the forward direction) must be routed through the same instance of each middlebox type. In other words, there must be session affinity, which may require forwarding rules for individual sessions.

5.5.3. Services requiring routing and forwarding

Some network services require routing and forwarding that the existing network does not have. Only the network’s administrative authority can provide these services, and even for the administrator it can be nearly impossible to do. Consider, for example, implementing mobility or inter-network multicast by routing and forwarding in the base Internet.

The Internet only works because routing is scalable, and routing is scalable only because names are aggregated into blocks, so that routes to all names in a block can be computed at the same time. For routing to apply to blocks, all the names in a block must be co-located. Yet if a named member belongs to a mobile machine, then that named member can be located in many different edge networks over time, so the name must be treated in global routing as a block of size one. If a name belongs to a multicast group the situation is even worse, as the name is located in many places simultaneously. Solutions to these problems, which do not rely on routing in the base Internet, are presented in §5.6 and §5.7.

5.5.4. Services requiring layering

Of all the mechanisms for adding enhanced services to a network ecosystem, layering is the most powerful. This section summarizes why and how it works.

5.5.4.1. WHO CAN ADD A LAYER?

Layering adds a new virtual network to a network ecosystem, for example the base Internet and its other virtual networks. This mechanism is available both to associations of users and to network administrators.

When an association of users decides to add a virtual network, it is a virtual edge network, because user machines participate in it (after new software is installed). In this case, wherever a session through the virtual edge network extends to endpoints that are not its members, subduction is active at the point in the session view where the session leaves the virtual edge network. This is illustrated by Figures 4.7, 4.11, and 4.13.

In some networks of the base Internet, especially edge networks, the administration has control of the software run by session endpoints on user machines. In these networks, the administration can add a virtual edge network, just as voluntary groups of users can.

In other cases, however, a network’s administration may wish to add a virtual network without changing session endpoints, either because session endpoints are not its members—the situation of Internet transit networks—or because the administration has little control over its members. In these rarer cases, the virtual network must be an island rather than an edge network. Virtual islands are illustrated by Figure 4.9 and by §5.7.

5.5.4.2. SERVICES REQUIRING A NAMESPACE

A new virtual network can add a new namespace, and a new namespace adds significantly to network services. Compared to the base Internet, a new namespace can provide names that are more abstract, more expressive, more persistent, or self-certifying for security. It can also make it possible to have multiple network members on a machine having only one member of the base Internet. Introducing a new namespace entails providing a directory to map new names to old names; the directory is an expense, but also an opportunity to provide flexible and dynamic mappings.

For example, the namespace of variable-length mnemonic domain names is an enormous asset to the World-Wide Web, and the most salient reason why the Web is a network, rather than merely an embedded IP protocol.5 The Domain Name System (DNS) is a directory providing flexible and dynamic mappings of domain names to IP names. Examples in Chapter 3 showed how DNS is used to implement load balancing, and how multiple domain names allow the same content-delivery machine to host multiple Web servers.

5.5.4.3. HAVING IT ALL

Adding an overlay to the base Internet, i.e., a virtual edge network or virtual island network, is a way of having it all. “Having it all” means that layering makes all the preceding mechanisms available for new services, in an elegant way that amplifies their power and simplifies their use. This is why there are so many examples of virtual networks overlaid on the base Internet.

Going through the previous requirements in order, if a service requires a new session protocol, then the new protocol can be the session protocol of the overlay network. And the overlay makes available the power of virtual links. Many overlay sessions can share a virtual link, sequentially or concurrently. This means that the implementing session in the underlay network is more persistent than the overlay session, which would not be possible if the new session protocol were simply embedded in other session protocols of the original network. (With protocol embedding, if there is a difference in persistence, then inner sessions are more persistent than outer sessions.) This capability of overlay networks is exploited by Tor, which has long-lived virtual links between Tor proxies.

[image:]
FIGURE 5.7. Middlebox insertion in an overlay network.

Concerning the insertion of middleboxes by means of compound sessions (§5.5.2.1), overlay networks offer an easy and elegant alternative. Consider the session in Figure 5.7, in which a user machine with IP name a initiates a session with a user machine at IP d. In the overlay network, these machines have members with names A and D, which could be more abstract than a and d, but are often the same for implementation simplicity (including the absence of a directory). To implement enhanced services, the session requires a chain of middleboxes, here with IP names b and c.

To implement this session, it is necessary to solve two problems: (i) How does each machine (endpoint or middlebox) know a name for the next machine in the chain? (ii) How does a packet carry names for both middleboxes and the session acceptor? §5.5.2.1 described ways to implement this session in the underlay of Figure 5.7 alone. In that section, both the solutions to (ii) require session behavior beyond what TCP and UDP normally do.

With an overlay, however, these problems become easy to solve. The chain of middleboxes is determined by routing in the overlay, while layering handles the translation from overlay to underlay names. Session packets naturally have two network headers, so that the inner header carries source A and destination D, while the outer header carries names for the current virtual link, e.g., source b and destination c.

Finally, an overlay can provide special-purpose routing. This makes special-purpose routing available to user associations, not just to the administration of underlay networks. It is very important that the overlay network has fewer members than the underlay network, so all routing problems are smaller and more manageable. The following are examples of special-purpose routing for enhanced services:

	An overlay concerned with multi-path communication can have virtual links that are abstractions of different underlay paths. Overlay members route packets over these links depending on measured performance of the paths. This is used, for example, in Resilient Overlay Networks.

	Routing with session affinity could be required either for anycast service or for load balancing over middlebox instances. This is difficult to implement in large networks, and both network administrators and user associations could resort to overlays with special routing for session affinity.

	As we have already seen, a Tor overlay network provides randomized routing to protect the privacy of its users.

	The following two sections present examples of overlays with special-purpose routing for mobility and multicast service.

5.6. Example: Mobility

Mobility occurs when a machine that is a member of a network moves physically, and therefore changes its connection to a network, as shown in Figure 5.8. On the left side of the figure, the member in red is connected to the network by a direct link to A. On the right side, after moving, the same member on the same machine is connected to the network by a direct link to C.

[image:]
FIGURE 5.8. Physical mobility, before and after.

“Mobility” as a service means that a network retains its ability to reach a member, even after physical movement of its machine. In fact, we use a stronger definition, associating mobility with an ongoing communication channel: “A session or link has the property of mobility if it can persist even as one or more endpoints are moving through space and changing their network attachments.” According to compositional network architecture, there are two principal patterns for implementing mobility in contemporary networks.

[image:]
FIGURE 5.9. Dynamic-routing mobility, before and after.

[image:]
FIGURE 5.10. Session-location mobility, before and after.

5.6.1. Definitions of mobility patterns

The first and conceptually simpler pattern for mobility is called dynamic-routing mobility (DRM); obviously (from the name) the network adjusts to the change by changing its routing. The name of the mobile member does not change. For example, on the “before” side of Figure 5.9, B is forwarding packets with destination = M toward A. After routing changes have propagated through the network, or been distributed from a central controller, B is forwarding packets with destination = M toward C.

In the second pattern for mobility, there is a distinction between two network names for a machine, a persistent “identifier” with which the machine can always be reached, and a “location” in a location-dependent namespace that changes as the machine moves. To maintain two names for a machine, this pattern requires two namespaces and is thus implemented in two layers. This is shown in Figure 5.10, where M, an identifier, is the mobile machine’s name in the overlay. In the underlay, as the machine moves, the location-dependent name of its underlay member changes from m1 to m2.

In the figure, M has a virtual link to S, which can be created and can persist regardless of how much the machine moves. This link is implemented by the session with s in the underlay. To maintain this session despite mobility, the underlay member on M’s machine must use the session protocol to signal to s that its name has changed from m1 to m2. This maintains the session in progress. In addition, the directory mapping for M must be updated, so that the location of M in the underlay is thereafter known to be m2. Because of these mechanisms, the second pattern is called session-location mobility (SLM).

For purposes of comparison to these two patterns, three mobility patterns are proposed in [36]. One of these patterns is DRM, there called “name-based routing.” Another of these patterns is a directory mapping identifiers to locations, which we exclude as a complete implementation of mobility service (not as a building block, as it is used in the previous paragraph) because directory lookup occurs only at the beginning of a session, and directory updates have no effect on existing sessions.

The third mobility pattern proposed in [36] is “indirection routing,” as exemplified by the Internet Indirection Infrastructure [83]. In the simplest form of indirection routing, every mobile member has a proxy, in a fixed location, that always knows where the mobile member is. All packets sent to the mobile member have the proxy’s name as their destination, and pass through the proxy. The cost of this design is “path stretch”: packet paths will be longer than necessary, possibly much longer, because of this detour. Due to the high cost of path stretch, and the fact that SLM improves upon it, indirection routing (and other solutions with path stretch) are now used only when feature interaction eliminates all the better options (see §5.6.3.2 and §5.9.3).

The fun part of mobility is understanding the circumstances in which each pattern is used. All forms of mobility concern independent movement of a machine, so all names in this section are unique names rather than group names. Other advantages, disadvantages, and enabling conditions for use of these patterns will be discussed in the next subsections.

5.6.2. Uses of dynamic-routing mobility

Dynamic-routing mobility is the quintessential service requiring special routing and forwarding in a network. As §5.5 states, it must be added to a network by the network’s administrative authority, or it must be added to a network ecosystem by means of layering.

The great disadvantage of DRM in a network is that it limits the scalability of routing. As explained in §5.5.3, DRM cannot be deployed in the base Internet, even if network administrators are willing, because it breaks the location-dependent name aggregation upon which scalability depends. Not only would a mobile member require its own entry in forwarding tables across the Internet, but also, whenever the mobile member moved, many of these entries would require updates. This was actually attempted once, by an airline that wanted IP names on its airplanes to be reachable wherever the planes flew [1]. The result was an immediate outcry from network operators everywhere, whose networks were suffering from the barrage of route updates.

In today’s Internet, DRM is added to the Internet by means of 4G and 5G networks, which are overlays (virtual edge networks) spanning radio networks and remote data centers, as presented in Chapter 4. The costs and challenges of running a large-scale radio network are such that the costs of dynamic routing pale in comparison. In earlier cellular networks, most of the work of DRM was performed in city-scale radio edge networks.

[image:]
FIGURE 5.11. Topology of a SEATTLE overlay network. The route to A from every forwarder is F, and the route to B from every forwarder is G.

In today’s Internet, there is also DRM within the scope of edge networks layered on wired Ethernets, simply because there is no difference between normal Ethernet routing and support of endpoint mobility. In a wired Ethernet, mobility occurs when a person unplugs a computer from one Ethernet socket and plugs it in somewhere else. The identity of the machine does not change because the Ethernet namespace is neither hierarchical nor location-dependent. The routing mechanism soon propagates new routes to the machine throughout the network’s spanning tree. The cost of dynamic routing, of course, is that Ethernets are limited in size because of the flooding algorithms used to implement dynamic routing.

Even in the context of the Ethernet design, layering can improve scalability, so that the convenience of DRM is available in larger local networks. This has been demonstrated by several experimental architectures for local networks [45, 57, 66]. SEATTLE [45] illustrates the idea.

In SEATTLE, a large local network has two layers. The members of the overlay are user machines and forwarders directly linked to user machines; the forwarders are fully connected to each other by virtual links as shown in Figure 5.11. Notice how easy routing is in the overlay—all a forwarder needs to reach a member is the name of its adjacent forwarder, and this route is the same from all forwarders!

The mobility service expected from an Ethernet network is implemented in the overlay alone. As in Ethernets, a forwarder soon learns about a user member freshly linked directly to it. Instead of a different forwarding table for each forwarder, which is the norm, there can be a single forwarding table for the entire network. In SEATTLE the forwarding table is sharded across the forwarders for high update capacity, but this does not change the fact that it is a single table, logically centralized. When a user member moves to a new forwarder, the new forwarder updates the centralized forwarding table, and notifies the old forwarder to update its cache. If a packet for the user member arrives at the old forwarder, the old forwarder both forwards the packet to the new forwarder, and notifies the sending forwarder to update its cache. This protocol ensures that the network responds quickly to user mobility.

Meanwhile, the membership of the underlay network consists of all forwarders, including some not in the overlay because they are not linked directly to users. Because the underlay need only support sessions between user-linked forwarders, its topology and routing change slowly. Because the underlay need not be a spanning tree, it can use ordinary routing protocols such as OSPF, and make efficient use of all the hardware links.

It is interesting to note that cloud computing as described in Chapter 3, which must support the migration of virtual machines, is similar to the SEATTLE architecture in its use of topology, layering, and a centralized forwarding table (in fact, cloud computing is mentioned in [45] as an application of SEATTLE). As in our general explanation of clouds, SEATTLE replaces all uses of spanning trees and flooding in Ethernets by more efficient algorithms.

5.6.3. Uses of session-location mobility

SLM as shown in Figure 5.10 requires two namespaces, one for identifiers and one for locations, with a directory to map between them. It also requires a session protocol capable of communicating changes of location between session endpoints. The only way to add a namespace to a network ecosystem is to add a layer and a directory; this is illustrated by Figure 5.10, in which the overlay has a namespace of location-independent identifiers, and the underlay has an SLM-enabled session protocol.

SLM does not introduce scaling problems, and the base Internet has a large suite of session protocols, so SLM is naturally compatible with the base Internet. For these reasons, most proposals for adding mobility service to the Internet are instances of SLM. Examples include the Identifier-Locator Network Protocol [8], Locator/Identifier Separation Protocol Mobile Node (LISP-MN) [58], the Host Identity Protocol [55, 62], Mobile IPv4 [64, 65], and Mobile IPv6 [63]. There are many detailed differences among all these designs, of course, which are explained in [94].

In the 1990s, when most ideas for Internet mobility were being developed, the major objection to SLM was that it requires the participation of user machines. This was regarded as a serious obstacle because user machines would need new software,6 and because untrusted user machines would be updating network infrastructure, i.e., the directory. Since then, downloading new software from the Web has become commonplace, and so has the use of cryptographic protocols to authenticate endpoint identities and protect communication from tampering.

To give some idea of the variations explained in [94], identifiers are usually reserved IP names, but they can also be hashes of public keys. DNS can be used as the directory (with new record types), or the design can have its own directory system. Protocols for updating correspondent endpoints and the directory are very diverse, especially as many standards provide a menu of implementation alternatives. As an alternative to building updates into the protocol for mobile sessions, it is also possible to use an existing IP control protocol such as the Internet Control Message Protocol (ICMP). This differs slightly from the SLM definition in §5.6.1, because in this alternative location updates are sent in ICMP sessions rather than in the mobile sessions themselves. Finally, encapsulation techniques are also diverse, but the simplest is LISP-MN’s, which is to encapsulate overlay packets in UDP packets of the base Internet, with destination port 4341 indicating that LISP-MN is the overlay. In all cases, the session protocols of the overlay are IP application and transport protocols.

In the next two subsections we explore some nuances of SLM in the Internet, and introduce some additional examples of SLM.

5.6.3.1. SESSION-LOCATION MOBILITY FOR THE WORLD-WIDE WEB

Not surprisingly, client-server communication with a Web server is an important special case for Internet mobility. It is easier to introduce SLM for this case, because the overlay network (World-Wide Web) and extra namespace (domain names) already exist; all that is needed is SLM support in the session protocol. Examples of session protocols for this use case include QUIC [49], TCP Migrate [80], and the End-to-end Connection Control Protocol (ECCP) [7]. QUIC is now widely adopted, while the other two are research proposals. Speaking technologically, QUIC is distinctive because only QUIC clients can be mobile. ECCP is distinctive because many integrity and security properties of ECCP have been verified [7].

The limitation of the Web as a network is that it has no namespace for clients apart from their IP names, i.e., current locations. Normally this is not a problem, because once a client-server session is set up, a mobile client communicates its new locations to the server through the session protocol.

These restrictions do bring up the question of what general-purpose functionality has been lost in the Web specialization. The loss is the inability to handle simultaneous mobility, which occurs when both endpoints of a session are mobile, and both move about the same time. Both endpoints will send notices of location change, but both will send them to the old locations, and both messages may be lost.

There is a solution, but it works only when both endpoints have identifiers in the directory. As each endpoint moves, it updates its directory entry as well as sending update notices to its session correspondents. Because the directory is updated promptly with an identifier’s new location, an endpoint that has lost its far endpoint can look it up its identifier in the directory [95].

[image:]
FIGURE 5.12. Interoperation in Mobile IPv6. HA is the name of the home agent for the mobile machine whose identifier is Mident. On the left side, user U is stationary. On the right side, U is also mobile, and the session has been optimized so that packets do not pass through home agents.

5.6.3.2. INTEROPERATION

There is still a significant problem with general-purpose Internet SLM, i.e., SLM not specialized for the Web, and that problem is interoperation. How does an Internet member with no knowledge of mobility create a connection to a mobile member, when the stationary member communicates through the base Internet alone, and the mobile member communicates through an overlay? Mobile IPv4 [64, 65] and Mobile IPv6 [63] both solve this problem; in fact, interoperation drives their design. The design of Mobile IPv6 is discussed here.

Mobile IPv6 has its own overlay network, which is an IP network with direct virtual links between session endpoints. The namespace of mobile identifiers is a reserved set of IPv6 names. This network must be composed with the base Internet by subduction, so that a session between a mobile endpoint and a stationary endpoint can travel through the base Internet near the stationary endpoint, and through the Mobile IPv6 overlay near the mobile member. An example of such a session can be seen on the left side of Figure 5.12.

With this design goal, where does a packet from a stationary endpoint enter the overlay? Each mobile machine has a home edge network with a mobility-enabled forwarder called a “home agent.” The mobile machine’s identifier is in the name block of its home network, and the mobile machine’s directory entry resides in its home agent. Normal IP routing carries packets destined for the identifier to the home agent, where they enter the overlay through a shared link. This is shown on the left side of Figure 5.12. In the overlay, packets travel on a virtual link to the mobile member. This link is implemented by a session in the base Internet, between the home agent and the mobile machine’s current location Mloc in the base Internet.

On the left side of Figure 5.12, all sessions and links are two-way, which means that all packets between Mident and U pass through the home agent. This is important in both directions because right-to-left packets have src = Mident. As the figure shows, they enter the base Internet from the home agent, where their source name is within the local name block. If they did not travel through the overlay, they would enter the base Internet at Mloc, which is in a different name block from Mident, and a security filter might drop them as packets with a spoofed source name.

The cost of this solution to the interoperation problem is path stretch. All packets between the stationary member and the mobile member travel through the home agent, regardless of their relative locations.

At the same time, the solution leads to simplifications and an optimization. For one simplification, when the mobile machine is located in its home network, there is no need for the Mobile IPv6 overlay, and packets can be forwarded from the home agent to the mobile machine in the base Internet. For another simplification, all sessions with the mobile member start out looking like the left side of Figure 5.12, even if the other endpoint is also a mobile member. With this simplification, there is no need for any initiator to know whether its desired acceptor is mobile or not. The optimization is that if both endpoints are mobile, they discover this through the session protocol, and upgrade to a direct session (no home agent, no path stretch) as shown on the right side of the figure.7

Note that, although the home agent introduces path stretch just as the proxy in indirection routing does, it is not a proxy according to the formal definitions of compositional network architecture. Rather than a proxy joining two simple sessions in a compound session, it is two forwarders, one attached to the other on the same machine. Here the function of the proxy’s compound session is performed by subduction instead.

5.7. Example: Inter-network multicast

The IP namespace has reserved multicast names, and the IP forwarding protocol allows for the replication of packets, so it is theoretically possible for the base Internet to implement multicast service. However, most network operators consider it a security risk to replicate packets for sources or destinations not in their networks. Consequently, base-Internet networks do not implement multicast, which is in keeping with the new end-to-end principle.

Multicast service not only requires special forwarding with replication, but also special routing. This section explains how inter-network multicast—multicast with global reach—is implemented for users of the base Internet as a virtual island network with special routing and forwarding. With respect to having special routing, it is just like a 4G/5G virtual edge network that performs dynamic routing for mobility.

Efficient multicast routing creates, for each sender of each multicast group, a tree of links rooted at the sender. The leaves of the tree are the group receivers, and each branching point is a forwarder. A forwarder receives incoming packets from a sender, chooses the relevant tree, and replicates each packet to send out on all branches toward the receivers. The closer each branching point is to receivers, the less overall network bandwidth used.

[image:]
FIGURE 5.13. The path of an IP multicast packet from a sender to a receiver in group G.

For members of an Internet edge network to participate in IP multicast, the edge network must have a multicast forwarder, which is on the same machine as a forwarder of the edge network (see Figure 5.13). As can be seen in the figure, the multicast network is overlaid on the base Internet with subduction, so that user machines need not be aware of it. Recall from Chapter 3 that an IP edge network layered on an Ethernet is usually fully connected, and this is what we are assuming.

Wherever a sender or receiver of a multicast group is located, it makes itself known to the local multicast forwarder, and gives the forwarder its local unique name, through the Internet Group Management Protocol. In the figure, the member of receiver group G makes itself known in its current edge network, along with its unique name in the network. The members of the multicast network manage group membership and dynamically maintain a multicast tree for each group sender. The internal links of multicast trees are virtual links implemented by the base Internet. When a local multicast forwarder receives an external packet for a group, it replicates as many copies as there are local receivers, and forwards them to the receivers.

This example is a good opportunity to illustrate some details of subduction. On the left of the figure, there is a shared link connecting the group sender to forwarder F1 in both networks. The constraint associated with this shared link is that packets whose destinations are multicast group names go to the overlay, and all others remain in the underlay. On the right of the figure, F3 is also the name of a forwarder member of both networks. It has shared outgoing links to all group receivers, which it uses to forward the multicast packets to them. This is a case in which a forwarder of a subduction overlay does not delegate forwarding decisions down to the underlay member, but rather makes those decisions itself. The reason is that the relevant information is group membership, which is stored and managed in the multicast overlay rather than the Internet underlay.

Interestingly, there has been a proposal to implement DRM in the IP multicast network [56]. In this proposal, the identifier of a mobile member is a multicast name—and the group has only one receiver. All senders must be in multicast-enabled edge networks, and every local multicast forwarder must have a route in the multicast network to this group’s receiver.

The analogy with mobility stops there. There is no SLM-like version of multicast, because SLM is implemented by endpoints. An endpoint form of multicast would mean that the sender replicates each packet and sends it independently to each member of the receiver group—definitely the least-efficient implementation.

IP multicast illustrates the value of the formal model of compositional network architecture. Because of the model, we can use two complex networking features—subduction and multicast service—together, and be confident that both work correctly because the intended properties of each feature can still be verified (verification will be discussed in the next chapter). Furthermore, the composed features retain their separation, so that the composition can still be implemented using standard building blocks.

5.8. Example: Security and privacy

Cyber-security is an enormous subject. Our tutorial on network security (there is a condensed [98] and a more detailed [97] version) has a framework classifying known attacks and defense patterns. The tutorial is based on compositional network architecture, which made it possible to analyze interactions among defense patterns.

For brevity, this section covers a limited aspect of security and privacy, namely how attention to layering in the Internet architecture can improve both security and privacy. Chapter 6 will look at security in other ways, as well.

Three attack classes identified in the tutorial are flooding attacks, subversion attacks, and policy violations (definitions below). The primary network defense agains all three categories is traffic filtering, in which a middlebox inspects packets and discards those considered dangerous. In §5.8.1 we examine traffic filtering more closely, showing the significance of placing each middlebox in the correct layer for its job.

In §5.5.4 we described adding a new layer to an architecture as a means of “having it all.” §5.8.2 puts this idea into practice by discussing how a virtual edge network can provide a comprehensively secure or private environment for communication.

5.8.1. Traffic filtering for security

It is already clear that traffic filtering is performed by middleboxes, that a middlebox belongs to a specific network (layer) of a network architecture, and that most Internet packets travel through multiple layered networks. So the architectural question to be answered here is, “Which layer should a traffic-filtering middlebox belong to?”

5.8.1.1. NETWORK-SPECIFIC ATTACKS

The examples in this subsection show that many security attacks target specific networks or types of network.

Flooding attacks. In flooding attacks on networks, the attacker seeks to exhaust the resources of network or network user by flooding it with packets. For a successful flooding attack, the attacker needs some form of amplification so that the victim has to work harder to receive attack packets than the attacker had to work to send them. Some amplification mechanisms are highly network-dependent. Working from the bottom up:

	It is easy to make a flooding attack on an Ethernet, because intentional flooding is fundamental to the network’s operations. The attacker can send many packets to randomly chosen Ethernet names (MAC addresses), most of which will not be used in this specific Ethernet, causing the forwarders to flood the packets through the network looking for paths to non-existent members. The attacker can also send many packets to IP names not used in the overlay IP network, causing forwarders to flood ARP requests through the Ethernet to find Ethernet names for the IP names.

	To attack forwarding in IP networks, one can send large packets to force forwarders to fragment and endpoints to re-assemble. To attack DNS, one can make queries for randomly chosen domain names, which will trigger multiple iterative DNS requests. To attack an IP member through DNS, one can send many DNS requests whose source is (falsely) the target’s IP name. The responses, which will all be sent to the targeted member, will be much larger than the requests were—especially if the request is tailored to elicit a large response. To attack a server that receives requests through TCP, one can initiate many TCP sessions without completing the setup handshake, so the server has to allocate buffer space and make other preparations for all of them (a “SYN flood” attack).

	To overburden a Web server, one can generate many requests for dynamically generated content. One can also request specific byte sequences within a Web page, which requires considerable computation on the part of the server.

Subversion attacks. Subversion attacks, quite different from flooding attacks, are attempts to make the victim behave according to the interests of the attacker. But like flooding attacks, they are also network-specific. Viruses and other malware exploit bugs in software by sending specific messages in specific protocols. BGP hijacking and DNS poisoning target IP infrastructure; they trick these protocols into accepting and storing false network data.

Policy violations. Finally, policy violations are attempts to violate the policies of the network, or policies of some other authority (such as the law) enforced by the network. Policy violations are also network-specific. Many policies do not just prohibit certain types of communication, but prohibit certain types of communication between certain identities, representing who or what is communicating. In many contexts, the identity of a responsible agent in a network is taken to be the name of the corresponding member of the network. For example, traffic filters in IP networks look at the source field of a packet for the identity, i.e., IP name, of the sender. Parental filters in the Web look at the destination field in an HTTP message for the identity, i.e., domain name, of the targeted Web server.

5.8.1.2. NETWORK-SPECIFIC TRAFFIC FILTERING

Traffic filtering is the primary network defense against flooding attacks, subversion attacks, and policy violations. Whenever possible, a filter defending against an attack should be a middlebox in the best network (with respect to layering) for detecting or preventing the attack. If so, the filter is sure to be examining packets of that network, with easily parsed headers and payload. If not, the filter may have insufficient information to find the attack, or can miss it in other ways, as in these examples:

	Anti-virus filters look for attack signatures in specific positions in packets. This assumes a specific packet format, with headers reflecting a fixed set of layered networks. If the format of an actual attack packet is different, its virus will be in a different position. Consequently, the best network for an Internet anti-virus filter is often the highest-level IP network, the one whose packets carry application payloads rather than overlay network packets.

	If a machine is mobile and has separate identifier and location names, then its persistent identifier is a meaningful indicator of identity, while its transient location name is not. Usually, its identifier and its location are its member names in two different networks, with the identifier network layered on the location network. If traffic filtering depends on machine identity, then the best network for a filter is the identifier network.

	A potential target in an IP network might be protected by filters located on all its incoming paths. However, a link inside the protective perimeter might be virtual and implemented by an Ethernet. If the Ethernet is insecure in some way, it can be used to inject attack packets into the virtual link, which then appear in the IP network inside the perimeter. Here the best network for defense is the Ethernet.

Note that in the first two of these examples, filtering is misplaced in a network below the best one for detecting or preventing the attack. In the third example, the filtering is misplaced in a network above the best one.

Even if an overlay or underlay network does not participate in amplifying, diagnosing, or defending against a flooding attack, this does not mean it is immune to the attack. Flooding attacks are attempts to exhaust physical resources, namely machines and physical links, which are shared by all networks in a stack of layered networks.

[image:]
FIGURE 5.14. Relationships among entities used to identify a member of a network.

5.8.2. Layering for security and privacy

The base Internet is not secure. With an overlay (virtual edge network), it is possible to connect machines with a level of security limited only by the trust achievable in real-world relationships. In the terms of §5.5.4, this is using the full power of layering to “have it all.” It is the clearest example we know of the tussle principle of designing so that different users can choose different outcomes.

First, network members can be authenticated to represent trusted real-world users. This usually depends on the relationships shown in Figure 5.14. The network member stores a public/private key pair, and any other network member can issue a challenge to the member, based on the public key, to ensure that it has the secret private key. Completing the triangle, the challenger can obtain a certificate, signed cryptographically by a certificate authority, that associates a public/private key pair with real-world identity information. This information includes names, physical addresses, etc.

Because a network has its own namespace, it is also possible to use a member’s public key (or a shorter hash of it) as its network name, as in the Host Identity Protocol [55, 62] and the Accountable Internet Protocol (AIP) [6]. In an AIP network, the forwarders themselves do name authentication to detect all false source names while the packets are still in transit.

Even network members owned by trusted agents can have buggy software or be infected by viruses. So a highly secure network should have middleboxes that do traffic filtering, as in the previous subsection. These days, most traffic in the base Internet is encrypted, making traditional intrusion-detection middleboxes almost useless. In a trusted overlay network, on the other hand, this severe conflict can be avoided. As shown in Figure 5.15, the overlay has secure links implemented by cryptographic sessions in the base Internet. The trusted middleboxes receive and process packets in the clear.8

[image:]
FIGURE 5.15. Some details of a secure overlay network, showing how middleboxes can do full packet inspection despite encryption, and how virtual links conceal the end-to-end paths of packets.

Underspecified session protocols with lax parsing are often security vulnerabilities exploited by viruses and other malware. For example, a parser might identify a field without checking its length, even though an over-long field that causes an overflow in a server is a good way to introduce a virus. Because an overlay network can have its own session protocols, a highly secure network can use state-of-the-art techniques for specifying session protocols and for making penetration attempts detectable by means of parsing.

Turning to privacy, the Tor virtual edge network is a perfect example of “having it all,” in the sense of §5.5.4.3, in pursuit of user privacy. Recall that several aspects of Tor were described in §3.4.2. Here are almost all the overlay mechanisms from §5.5.4.3, and how they are exploited by Tor to elude surveillance of user sessions:

	A Tor network has its own session protocol (not included in this book) that uses encryption very cleverly to hide full knowledge of a user’s session from members of the Tor network themselves.

	The virtual links of a Tor network are more persistent than any user session, and are shared by many user sessions. Reuse of virtual links makes Tor more efficient, and helps to obscure the individual user sessions.

	Tor proxies are an essential part of Tor operation. They are middleboxes in the paths of user sessions, and the overlay structure makes it easy to insert them.

	The path of a user session through the base Internet consists of a concatenation of sessions (implementing virtual Tor links) whose source and destination names reveal little about the user path.

	The path of a user session through the base Internet is determined by special-purpose Tor routing, which is randomized and changes frequently.

In summary, this subsection has shown how all parts of an overlay network—its namespace, membership control, virtual links, middleboxes, session protocols, and routing—can be designed to heighten the level of security and privacy enjoyed by its users.

5.9. Example: Firewall traversal

5.9.1. The problem with firewalls

It seems inevitable that there will always be stateful firewalls guarding edge networks of the Internet. A stateful firewall makes a distinction between (internal) members of the edge network and (external) members of other IP networks. And it only allows dynamic sessions with internal initiators. The mechanism is that the first message from an internal initiator to an external acceptor creates session state in a firewall. External messages must always enter the network through the same firewall, and are only allowed in if they belong to an existing session. It is very important to note that both session protocol and firewall must have the same definition of session identification.

Ideally, a dynamic session ends with one or more teardown messages. However, a firewall can delete session state automatically if it judges that the session is no longer the best use of its resources. This is absolutely necessary because the endpoints of a session could fail to send session-teardown messages, or those messages could be lost in transit.

This section is not about the benefits of firewalls. Rather, it addresses the negative side-effects of firewalls: They are obstacles to the formation and survival of legitimate sessions. The services considered here are the services that help overcome these obstacles.

In addition to preventing externally initiated sessions, firewalls threaten the survival of sessions that:

	have bursty traffic,

	have messages that are not all routed through the same firewall instance,

	change identification due to mobility.

Firewalls are often combined with network address translators, because both need much the same session state. NAT functionality exacerbates the difficulty of initiating sessions externally, because internal members of edge networks of the base Internet may not even have unique public names.9 For the remainder of this section, “firewall” includes firewalls and NATs combined. The entire problem is worse for QUIC sessions than for TCP sessions, because QUIC is embedded in UDP (see §5.4.4.4), and firewalls often time out UDP sessions sooner than TCP sessions.

In considering solutions to this problem, it is tempting to think that if stateful firewalls did more—checked cryptographic credentials, maintained whitelists of trusted external members—then everything would be easier. This is true, but firewall design is based on a delicate trade-off between functionality and resilience to flooding attacks. If firewalls are asked to do too much for each session, then firewalls are likely to be the first victims of flooding attacks, rather than protecting the rest of the network against them.

5.9.2. Helping sessions survive

First we consider the easier problem of helping established sessions survive the threats to them posed by firewalls. All the solutions are embodied in session protocols, so they can be deployed in any network in which the suite of session protocols is extensible.

The best Internet solution so far is embodied in the QUIC design, in which session identification is based on the session-identifier field alone, rather than on the session-identifier field plus endpoint names (as in TCP). Provided that a new burst of traffic (after a UDP/QUIC session has timed out) is initiated by the endpoint (client) behind the firewall, the firewall will accept it as a new session, and the other endpoint (server) will recognize its ongoing session from the session identifier. This works even if the firewall/NAT changes the endpoint name and port as seen by the server, compared to the previous client name and port of the session. This also works if the client is mobile, and/or if the new burst of traffic comes to the server through a different firewall instance.

Note that either client mobility or a change of the name binding in a NAT changes the client name of a QUIC session in Internet transit networks, and is thus useful for privacy. To support privacy further, control messages in QUIC can be used to negotiate a set of identifiers for the session. Then, when a client name changes, a new session identifier can be chosen from the negotiated set, obscuring the continuity of the session much more effectively.

Another way to keep a bursty, long-lived session alive is the use of keepalive messages. One advantage of keepalive messages is that they can be sent in either direction, so an endpoint outside the firewall can generate them. They can also be sent using many different session protocols, including TCP.

Finally, we come to the interaction between firewalls and session-location mobility (SLM). In QUIC’s version of SLM, only the client can move, and this interacts well with firewalls as explained above. But what about other sessions using SLM, in which either end can move? A session with SLM can be kept alive despite mobility of the external endpoint, if the external endpoint can predict this in advance. Then the external endpoint can send rebinding information (new endpoint name, possibly a new session identifier) to the internal endpoint in a control message, and the internal endpoint can start sending with the new information and create new firewall state. Otherwise, the problem is just like the problem of simultaneous mobility in §5.6.3.1, and the only solution is first-class mobility and a directory lookup by the internal endpoint.

5.9.3. Externally initiated sessions

How can an external endpoint initiate a session? This is a problem with no really good solution. It has made voice-over-IP applications very difficult to develop, and there is no way to know how many other innovative applications it is discouraging, or making too inefficient to succeed. Here are the existing ideas and workarounds:

	Holepunching [33] and Session Traversal for NAT (STUN) both rely on an assumption that a firewall is combined with a “cone” NAT, which uses a single public IP name and port number for all the external sessions using a single private IP name and port number. This is not compatible with firewalls without NAT, nor with privacy preservation. If you go through the details of holepunching, you will see that it is an inefficient and chancy mechanism.

	A Traversal Using Relays around NAT (TURN) server is a rendezvous proxy, located in a transit network or in an edge network allowing externally initiated sessions. It is inserted into a session because the internal endpoint has a long-term session to it, which the proxy makes into a compound session when some other party attempts communication.

	Other possibilities are to give cryptographic credentials to the potential external initiators, or to put their names on whitelists. As noted above, this risks making firewalls themselves vulnerable to flooding attacks.

Of these choices, a rendezvous proxy is the best, although it incurs the cost, path stretch, and failure risk of a middlebox that every session message must pass through. For this solution, the internal acceptor must have a persistent session with the proxy, as shown in Figure 5.16. External setup messages must be routed to the proxy, where they can be forwarded to the acceptor in the payload of a message of the persistent session. If the acceptor only has the capacity for one such session at a time, then its persistent session with the proxy and the session from the initiator to the proxy become two halves of a compound session. If the acceptor has the capacity to accept multiple sessions, it can set up a parallel session with the proxy, which becomes part of the compound session with the initiator, leaving the persistent session to accept new initiations. This is the option illustrated by Figure 5.16.

[image:]
FIGURE 5.16. Creating a session through a rendezvous proxy.

Concerning security, to make the example more interesting, we have pictured the initiatior as well as the acceptor behind a stateful firewall. The rendezvous proxy must not be protected in this way! It can authenticate setup messages on behalf of the acceptor, substituting for the firewall protection that the acceptor is evading. There may be no good way, however, to protect the proxy from flooding attacks.

A rendezvous proxy can easily handle changes of session identification, whether due to mobility or privacy preservation. These are changes to simple sessions, and the other halves of the compound sessions are not even aware of them.

Because the proxy introduces path stretch and a single point of failure, it would be nice to remove it from the session path once the session has been established. This is only possible if the session initiator can receive new setup messages, i.e., is not protected by a stateful firewall as in Figure 5.16. If so, the acceptor can initiate a new session to the initiator; once it is set up, the old compound session is torn down, and packets are sent through the new session only.

Two questions remain: If the acceptor only has a private, ambiguous IP name, how does the initiator name it? And what ensures that the setup message is routed to the rendezvous proxy? The elegant answer to these questions is an overlay network, in which the acceptor has a real name and all setup messages are routed in the overlay to the rendezvous proxy for that name. This solution is convenient because the architecture distinguishes between the persistent session between the acceptor and the proxy, which is merely the implementation of an overlay link, and the users’ end-to-end session, which lives in the overlay. They exist at different levels, and can even have different session protocols. SIP signaling networks [76] work in this way.

5.10. Conclusion

This chapter has defined enhanced network services, in the Internet ecosystem, as services that enhance the base Internet by overcoming obstacles to the success of user communication sessions. The obstacles include endpoint limitations, network limitations, insufficient security or privacy, and side-effects of beneficial network features.

The chapter also provides patterns for adding enhanced services to the Internet ecosystem. These patterns classify services according to which parts of a network must be extended, and then show which composition mechanisms enable such extensions. In doing so, the patterns connect services to architecture. In addition we have given four detailed examples of important enhanced services, some with their own specialized patterns.

The highlight of this chapter is the repeated use of a very small set of mechanisms to extend the Internet ecosystem, incrementally, with a very large set of services. This is possible because each mechanism is defined with the greatest possible generality, and because each mechanism is a fundamental part of compositional network architecture. In other words, we are not answering the question, “What are all the ways to add each particular service?” Rather, we are answering the question, “How can all services be added, with good performance and efficiency, with the fewest different mechanisms?” The potential payoff is simpler, better-engineered implementations without loss of functionality.

1. In a satellite broadcast network, as an exception, only the satellite sends, and only the antennas receive.

2. We know this is not immediately obvious, but the mathematics makes it clear. If a link can be two-way, then every possible formal definition of reachability is inaccurate in some way.

3. According to a representative of the National Association of Securities Dealers Automated Quotations (NASDAQ) corporation, “OUCH” does not stand for anything. “SOUP” must not have stood for anything, either, as it is now SoupBinTCP.

4. There is one case that doesn’t fit: The administrative authority of an existing network might want to add services in a modular fashion, without changing the existing network. For simplicity, this case is included as an “association of network users.”

5. Strictly speaking, the Web namespace also includes IP names, used for clients, while domain names are used for servers.

6. Believe it or not, updating user machines used to be considered a hard thing to do.

7. In actuality, if both endpoints are mobile, the original session (before upgrade) goes through the overlay near both ends, with a dip down to the base Internet between the two home agents. For brevity, this is not shown in the figure.

8. There are versions of TLS for using trusted middleboxes in the base Internet [60, 61], where the challenge, of course, is achieving the necessary level of trust among parties.

9. Some people think that in IPv6, NATs will not be used, because there is no need to reuse IP names. Other people disagree, on the grounds that NATs will remain valuable for hiding the internal structures of edge networks. Either way, stateful firewalls will remain, and so will these problems.

6
Ideas for a Better Internet

6.1. Introduction

Up to this point in the book, compositional network architecture has been used descriptively—to organize, explain, and compare the characteristics of today’s networks. In this last chapter we consider what it might mean to use the model prescriptively, i.e., as a way of designing and building networks.

Most generally, the benefit of compositional network architecture is that it emphasizes effective—and much used—forms of modularity. Networks are the most important modules, but sessions are also modular, because of compound sessions and protocol embedding. By defining concepts carefully and formally, compositional network architecture expands the design space of network architecture by removing artificial constraints on the use of modular structures. Modularity helps to uncover repetition of functions and even patterns, which can then be leveraged to reduce complexity. Modular structures and reuse of artifacts can increase automation, including automation of implementation, verification, evolution, and optimization.

The potential of compositional network architecture is not narrowly confined to one aspect of, or technology for, networking. This chapter has suggestions for obtaining its benefits in five different areas. Each section also points out relevant areas for future research.

Internet standards (§6.2). The purpose of updating Internet standards is to make the Internet more composition-friendly. This can mean making the various forms of composition freely available for use, without unnecessary constraints. It can also mean standardizing Lego-like interfaces between network data planes, so that practical network composition requires less custom work.

Verification and security (§6.3). Verification of network services as experienced by network users is beyond the reach of today’s verification technology. This section shows how the modularity that comes from network composition might be used to make service verification feasible. Verification supports network security for the obvious reason that many verified properties will be security properties. In addition, the existence of well-defined module boundaries—which will be necessary for scalable verification—will provide new places where security can be checked at runtime and security-enhancing attributes such as provenance can be attached to packets. These ideas are supported by three case studies and a research agenda for modular verification and security.

Principles of network architecture (§6.4). Since the origin of the Internet, thoughtful people have wondered what the ideal architecture for such a thing might be. Knowing that the current architecture features plentiful layering and subduction, we have an opportunity to renew the principles of network architecture as a research topic: What are the constraints on layering, and what is a good organization for a hierarchy of layered networks? The previous five chapters have given us many hints and examples, and this section aims to stimulate research with a few observations drawn from them.

Implementation and optimization (§6.5). Although §6.3 introduces research questions to explore how modularity can be exploited for verification and security, even better than verification would be to synthesize correct-by-construction implementations of composable networks. §6.5 covers some of the steps that would be needed. This section also discusses optimization, which should be applied selectively to remove excess generality from modular implementations.

Teaching (§6.6). Finally, the easiest way for new ideas to make a difference is to change the way that networking is taught. This is especially true for compositional network architecture, since its primary purpose is description. This section offers some thoughts on how both undergraduate and graduate courses might be updated with material on the new model.

The conclusion of the book (§6.7) reflects on the promises made in Chapter 1, as well as our hopes for our readers.

6.2. Internet standards

The most obvious way to use the new model prescriptively, toward a better Internet, is to make the structures that enable composition explicit and standard, as opposed to implicit and idiosyncratic. This would ease the progress of further evolution, as networks and services could more easily be assembled like Lego blocks, without unnecessary constraints on their composition. It would also reduce complexity, as many different ways of implementing the standards could be replaced, gradually, by a few well-engineered implementations.

6.2.1. Session architecture

To improve the IP forwarding protocol, standards for IPvN (any future version of IP) should adopt a packet format like the general format introduced in Chapter 2, which is reproduced in Figure 6.1 for convenience.

[image:]
FIGURE 6.1. The most general format for a packet containing whole messages (no fragmentation). The shaded area is a message of protocol P. Both network header and session header can have other fields specific to the design of the network or protocol.

This packet format has many advantages:

	The format supports embedding of any number of protocols in a uniform way. As discussed in §2.4.5, In IPv4 protocol embedding is irregular, and composing more than three session protocols is uncharted territory.

	In this format, each session header has its own session identifier. For example, if there are three session protocols composed with protocol embedding, there will be three session headers containing three session identifiers. Previously, §5.4.4.2 explained why, in the presence of subsessions, each embedded protocol might need its own session identifier.

	Recall that the session identifier of the outermost session protocol must be considered part of the network header as well as part of the session header, because the network may need this information to process packets. In this packet format, in all session headers, session identifiers have exactly the same format (length and position). This means that any session protocol can be outermost in an embedding, which eliminates the artifical constraints found in IPv4 and IPv6 (see §5.4.4.4).

	Session identification consists of the session-identifier field alone. As a result, a session can retain its identity even if services such as mobility (see Chapter 5) alter the source or destination names in packets.

It is interesting to note that the IPv6 design divides the network forwarding protocol into a number of optional sub-protocols (single-hop functions, optional routing functions, fragmentation, encryption, etc.). In the IPv6 packet format, the format of network headers provides for embedding of any subset of these optional sub-protocols, provided that a fixed embedding order is preserved. The mechanism is chaining of network headers, exactly as session headers are chained in Figure 6.1. It is discouraging that the IPv6 standard does not extend the same compositional freedom to session protocols.

It is also worth investigating whether compound sessions could be standardized in some way, or other aspects of protocol embedding. For example, the interface between protocol-implementation modules could be standardized, so that inner protocols always have the freedom to choose the outer protocols they are embedded in.

With improved protocol embedding, designers would be free to consider deeper questions about which session protocols should be embedded, in which order, and why. As an example of the implications, wherever an encryption protocol is placed in a chain of embedded protocols, the headers and payloads of the protocols embedded in it will be encrypted, and the headers and payloads it is embedded in will not. This gives designers the ability to control which beneficial information the network infrastructure can read, and which private information it cannot read.

6.2.2. Layering and subduction

The layering interface between networks, in which an underlay session implements an overlay link, has already been illustrated many times in this book. Fittingly, because it is based on the user interface to a network, it is similar in spirit to the well-known “sockets” interface to IP networks. Unlike sockets, however, it also replaces tunneling in network infrastructure—simply because a tunnel is really a virtual link in an overlay network. It is also easily extended to include subduction.

6.2.2.1. ALGORITHMS AND DATA

Figure 6.2 presents a detailed and fairly general version of the layering interface. For simplicity, the overlay network is layered only on the underlay network, the underlay network implements links only in the overlay network, and each machine in the figure has only one member in each network. All links and sessions, if dynamic, have already been set up.

Figure 6.2 shows four implementation actions: linkTransmit, linkAcquire, sessionSend, and sessionReceive, which operate as follows:

	LinkTransmit uses a transmitTable in its network member to map the identifier of an outgoing link to the identification of its implementing session. It then writes the identification and the packet being transmitted into a local buffer.

	sessionSend reads the local buffer and uses a sendTable to map the session identification to header fields for messages in this session. It then encapsulates the payload in the message header and sends it.

	SessionReceive is enabled when a message is received by a network member in a session. The action uses a receiveTable in its network member to map its identification to a link identifier in the overlay. It then decapsulates the payload of the message and writes it into a local buffer.

	LinkAcquire reads the packet from the local buffer, and handles the packet as acquired on that incoming link.

[image:]
FIGURE 6.2. The layering interface between composed networks. All arrows indicate the flow direction of a message from A to B in an overlay session.

In this case, regardless of how different the designs of the overlay and underlay networks are, the layering interface demands agreement on only two things: (i) a syntax for communicating overlay link identifiers, and (ii) a syntax for communicating underlay session identification.

If a network is involved in layering interfaces with multiple other networks and/or multiple attachments within a network, then additional parameters are needed to select networks and network members. In addition, dynamic setup of links and sessions requires a socket-like interface to populate the tables in the network members. Also, subduction requires simple changes to linkTransmit and sessionReceive.

Layering is a structured operator that replaces tunneling and most packet rewriting, in the following way. In Figure 6.2 overlay member M is a middlebox that is forwarding packets from A to B. Let’s say that the underlay is an IP network in the base Internet, and that it does not conform to the new end-to-end principle, so that the layering structure is implicit and the middlebox is simply considered part of the underlay network. In this case the associated links and sessions in Figure 6.2 will be merged together as tunnels in the underlay network. The forwarding at M will be implemented with packet rewriting in m, to change the source field from a to m, the destination field from m to b, and the session-identifier field from A2M to M2B. In contrast to this, the structured description of layering features a semantically meaningful overlay network, and a justification for exactly which fields of the underlay packet are changing in the middle machine—and which fields should not change.1 The structured view is much better for verification.

6.2.2.2. VARIED IMPLEMENTATIONS OF THE STANDARD

The implementation of layering in Figure 6.2 is suitable for a software implementation. Other implementations could add and/or subtract parameters to increase or decrease generality as the situation requires. For example, compare Figure 6.2 to Figure 3.19. In those tables, there is an additional parameter for the tenant Ethernet, because many tenant Ethernets are layered on a single data-center network. On the other hand, there is no need to preserve all the independence of overlay and underlay networks, so the “implementation send table” in Figure 3.19 is a composition of a transmitTable and a sendTable in Figure 6.2. More specifically, the two tables are joined at the session identifier, so an overlay link identifier maps directly to an underlay message header.

Of the possible implementations of a layering standard, the most different from Figure 6.2 would be a line-rate hardware implementation. The most prominent difference, of course, is that there would be no buffering—all the operations on a packet coming into the machine hosting M and m would occur in the sequential stages of a hardware pipeline, regardless of whether they conceptually belong to M or m. This is possible, as we have demonstrated with a prototype implementation of layering and subduction written in P4 [16], a language for programming packet-processing hardware. See §6.5 for further details.

There is a final point to make about how the new end-to-end principle affects implementation. As mentioned above, if the new principle is ignored, the middle machine in Figure 6.2 might be considered infrastructure of the base Internet, and a line-rate hardware implementation of its implicit layering might be necessary. If the new principle is honored, on the other hand, then this machine is hosting an infrastructure member M of the overlay, and also a user member m of the base Internet. A user member of the base Internet has little importance, so the significance and performance requirements of the machine depend strictly on the purpose of the overlay network. And depending on that purpose, as well as the traffic load in the overlay, a software implementation of layering might work just as well as a hardware implementation.

6.3. Verification and security

First, what is needed to make network services, as experienced by network users, verifiable? Network verification is already an active research area, but currently encompasses mainly properties of the base Internet. The properties verified are low-level and weakly related to the properties that distributed systems (and users!) require [13]. And, of course, scalability of verification is an insistent concern. From this viewpoint, the biggest needs are for stronger specifications, more closely related to user experiences, and for more scalability in verification.

Second, how can verifiability be built into network designs and implementations? Strong specifications and scalable verification are not easy goals. In our view, the practical modularity exposed by network composition is a breakthrough that can bring us much closer to the realization of this vision.

This point is so important that we illustrate it, in the next three subsections, with three examples of modularity in support of verification. In each thought experiment, network services are provided by one or more virtual edge networks layered on the base Internet. The structures of the virtual networks are directly related to services, and desirable service properties are specified in terms of the virtual networks. Because these networks are at the right level of abstraction, it is relatively easy to see which properties are needed, and the properties tend to be interesting and non-trivial. Equally important, each network’s implementation is responsible for enforcing a well-defined set of properties. The layering (and subduction) structure decomposes and minimizes the complexity of verification in various ways, so that verification can become scalable.

Verification supports security in the obvious way: Explicit security properties can be verified. We believe that modularity can also contribute to security in other ways, by providing boundaries that act as security walls. Module interfaces can be standardized, implemented automatically, and checked for any inconsistencies. For example, the layering structure in compositional network architecture provides explicit handles for attaching provenance to packets, because each packet that crosses a layer boundary was received in a well-defined session in the underlay, and also on a well-defined link in the overlay. All of these options can enhance security in two ways: (i) by encouraging many security checks that are rarely seen otherwise; (ii) by reducing the “attack surface” of custom and non-reusable code. Reducing the attack surface is especially important because it is the field of opportunity for new attacks.

§6.3.4 summarizes the examples in the form of a research agenda for modular verification and security.

6.3.1. Example: Global private multicast

In this example, there is a service provider whose network supports many private networks for its customers. The relationship between customer networks and the service provider’s network is very much like the relationship between tenant networks and a data-center network in cloud computing. The difference is that, in this case, the service provider’s network is global. The customers benefit because they can have network members all over the world without the complications of maintaining machines in many countries [100]. In the terms of compositional network architecture, the service network is a virtual edge network layered on the base Internet, and the tenant networks are separate virtual edge networks layered on the service network.

[image:]
FIGURE 6.3. A private multicast network, implemented as an overlay on a shared global service network. The one-way links in the multicast network form a multicast tree. In the service network, members on service machines implement virtual links in the customer networks (one session implementing a virtual link is shown). The service network is an overlay on the base Internet.

We focus on an enterprise customer needing a global private multicast service. The members of the customer network include senders and receivers of multicast data (S, R1, R2, and R3 in Figure 6.3), and also multicast forwarders (these are the members of the multicast network running on service machines in Figure 6.3).

The requirements for this service include properties in three categories, §6.3.1.1 through §6.3.1.3.

6.3.1.1. MULTICAST PROPERTIES

The desired functions are specified by three service properties of the multicast network:

Multicast Property 1: Assuming that all links of a multicast network have reliable delivery, and members of a multicast network do not fail, a packet sent to a multicast group by an authorized sender will be delivered to all receivers in the group, with the exception of the sender if it is also a receiver.

The assumptions in Multicast Property 1 serve the purpose of separating logical correctness from reliability and performance, which are handled separately.

Multicast Property 2: A packet sent to a multicast group by an authorized sender is not delivered to any user member other than a receiver in the group.

Multicast Property 3: A packet sent to a multicast group by a member that is not an authorized sender is not delivered to any user member.

[image:]
FIGURE 6.4. Two security attacks on the service network.

6.3.1.2. SECURITY PROPERTIES

User machines participating in a customer network must be disjoint from the user machines of all other customer networks. The identity of a user machine is authenticated when it joins the service network. With this knowledge, the service network will be able to guarantee the following security property:

Isolation Property: A packet sent by a customer network through the service network is delivered by the service network only to members of the same customer network.

Figure 6.4 illustrates a packet path in which a service-network member belonging to one customer emits a packet with destination D, which is the service-network name of a member belonging to a different customer. This path is prevented by Isolation Property. The property protects a customer network in two ways: (i) packets don’t go astray and leak information about the customer; (ii) user machines of other customer networks cannot inject malicious packets into this customer’s network.

There is another security property that is also illustrated in Figure 6.4:

Enclosure Property: A packet delivered by the service network to a member of a customer network must have been sent through the service network by a member of a customer network.

How could Enclosure Property be violated? A member of the service network could “go rogue” and generate new packets that were not sent in any customer network. More plausibly, the danger lies in the fact that the links of the service network are implemented by sessions in the open Internet, so any attacker could send packets to the IP name of a service machine. This is the possibility shown in Figure 6.4; the injected packet is illustrated as just appearing somewhere on the path between two members of the service network. If the attack succeeds, the service network treats the injected packet as if it were received on virtual link k.

Enclosure Property could be enforced with encryption of the sessions implementing virtual links of the service network, but this might introduce more overhead than is desirable for multicast service. Another approach would be to check that packets coming into a service machine have a secret known only to members of the service network, and preferably known only to senders on a specific virtual link, so they cannot be imitated by off-path attackers [5, 44].

6.3.1.3. LINK PERFORMANCE PROPERTIES

Multicast Property 1 assumes member availability and reliable delivery, so the property can be defined as a purely logical property of the multicast network. Nevertheless, it makes sense for the service network to offer low latency, low packet loss, and high bandwidth on links of customer networks, as services for those customers willing to pay for them.

The service network can offer these customer services using the techniques introduced by Resilient Overlay Networks [4]. Like RONs, the service network can monitor the performance of its links, and distribute the results across the network. As shown in Figure 6.3, the service network has multiple internal paths. This means it can allocate customer sessions to specific service paths, and re-route them dynamically when the performance of the current path becomes too poor.

6.3.1.4. MODULAR VERIFICATION OF THE PROPERTIES

Table 6.1 summarizes the properties presented. Two things about this table are worth noting. First and foremost, every property is specified in a single network, and also enforced and verified in a single network, which is a powerful form of modularity. Second, two simple patterns apply. An intra-network property is specified, enforced, and verified all in one network. A “standard-layering” property is specified on the links of an overlay network. The links are implemented by sessions in an underlay, and their properties are enforced and verified in the underlay network. The word “standard” refers to the fact that this proof obligation applies to every implemented link.

Existing tools for data-plane verification [13] take the forwarding rules in network members and analyze them for reachability, blocking, middlebox insertion, and other important path properties. All of the logical properties of this example can be verified in exactly the same way: Multicast 1 is a reachability property, and the other four logical properties are all blocking properties (they specify places where particular packets must not be delivered). The important difference is that, because of the intrinsic modularity of compositional network architecture, each property can be verified on the forwarding tables of one virtual edge network only. And because of separation of concerns, the tables of the virtual network are implementing only its design goals, without regard to the design goals of other networks—for example, the base Internet’s goal of global reachability. Without benefit of this structure, verification would be working on Internet tables encoding an assortment of policies at different levels of abstraction, or on a tangle of ad hoc tunnels.

TABLE 6.1. Properties for global private multicast.

	
Property

	
Network Specified in

	
Network Enforced and Verified in

	
Pattern

	
Multicast 1-3

	
multicast

	
multicast

	
intra-network

	
Isolation

	
service

	
service

	
intra-network

	
Enclosure

	
service

	
service

	
intra-network

	
Link performance properties

	
multicast

	
service

	
standard layering

The argument in terms of scale is equally strong. Each virtual edge network has fewer members than the base Internet it depends on. It also has far fewer forwarding rules, for reasons explained in §4.3. Together, these reductions mean that formal verification of individual networks may be feasible in many situations where verification of the unstructured base Internet is infeasible due to computational complexity.

6.3.2. Example: Secure enterprise network

6.3.2.1. SECURITY PROPERTIES

Figure 6.5 shows a session in an enterprise edge network with security features. The employee’s laptop has an IP address E in the block reserved for the personnel department. The filter F allows only machines belonging to the personnel department to access the personnel database. It also does anti-virus scanning. Because access from E is allowed, there is now a TCP session between E and personnel database D.

[image:]
FIGURE 6.5. A session in an enterprise edge network with security.

At the highest level, we can specify the desired security properties of this network as follows:

	Database safety: Packets to D must all come from machines assigned to the personnel department, and incoming data streams have no known viruses.

	Transport safety: Network transport must have data confidentiality and data integrity (no spying, no tampering).

Database safety decomposes into the following, more specific, properties:

	Routing with session affinity: Every packet delivered to D passes through some instance of the filter middlebox, and all packets of a TCP session go through the same instance. This allows the filter to reconstruct the TCP byte stream.

	Filter correctness: A database filter allows packets to pass through if and only if their source name is in the block reserved for the personnel department, and their reconstructed TCP byte stream has no known viruses.

	Source validity: Packets with source names in the personnel block are delivered to the filter only if they were sent by machines belonging to the personnel department.

	Forwarding transparency: Forwarders and other middleboxes in network paths do not alter the source fields, destination fields, or session identifiers of packets. This property is necessary because enforcement of all the previous properties depends on these fields.

Figure 6.5 gives a simplistic view of the enterprise network. For one reason, it tells us nothing about how employees are able to work on their laptops wherever they happen to be. So a more complete version of the enterprise network and its environment is shown in Figure 6.6. This figure shows that the enterprise network uses virtual private network technology to allow secure employee access from remote locations. The employee’s laptop has temporary address X in an edge network in a coffee shop. The VPN is composed with the base Internet, which includes the enterprise edge network, by means of subduction: it is bridged to the enterprise edge network, and layered on many networks of the base Internet. For reference, this figure is similar to Figure 4.11.

With this additional detail, it is possible to decompose Transport safety into the following, more specific, properties:

	VPN link safety: Links in the VPN have data confidentiality and data integrity.

	Enterprise link safety: Links in the enterprise network, including bridging links with the VPN, have data confidentiality and data integrity.

	Middlebox correctness: All other middleboxes in the enterprise network, on the path shown in Figure 6.6 between F and D, preserve Transport safety.

[image:]
FIGURE 6.6. The enterprise network augmented with a VPN.

6.3.2.2. MODULAR VERIFICATION OF THE PROPERTIES

Table 6.2 summarizes the security properties that have been presented. All of the verification fits the intra-network or standard-layering patterns, as in the previous example, but there is also a third pattern to be discussed.

TABLE 6.2. Security properties of the virtual private network (VPN) and enterprise edge network (EEN).

	
Property

	
Networks Specified in

	
Networks Enforced and Verified in

	
Pattern

	
Routing with session affinity

	
EEN

	
EEN

	
intra-network

	
Filter correctness

	
EEN

	
EEN

	
intra-network

	
Middlebox correctness

	
EEN

	
EEN

	
intra-network

	
Source validity

	
VPN

	
base Internet

	
standard layering

	
VPN link safety

	
VPN

	
base Internet

	
standard layering

	
Forwarding transparency

	
VPN, EEN

	
VPN, EEN

	
inherent property

	
Enterprise link safety

	
EEN

	
underlay of EEN

	
standard layering

The properties in the table must be verified using an assortment of techniques:

	Routing with session affinity is verified by network verification of forwarding rules.

	Filter correctness and Middlebox correctness are component properties, and must be verified on the programs (whether hardware or software) of these middleboxes, perhaps as in [90].

	Source validity (at least for packets originating in the VPN) is provided by cryptographic endpoint authentication in the IPsec protocols. VPN link safety is provided by the encryption in the IPsec protocols. If verified, they are verified through a cryptographic proof.

	Forwarding transparency is an inherent property of networks that follow the rules of compositional network architecture (see below).

	Enterprise link safety depends on the implementation of links in the enterprise network. If they are physical, it depends on physical security. If they are virtual, it depends on the underlay network (such as an Ethernet) and probably also on physical security.

In §6.2.2 it was noted that a standardized implementation of layering and subduction replaces most instances of packet rewriting. We conjecture that it should replace all rewriting of user-chosen fields by forwarders. Assuming this rule, then Forwarding transparency is an inherent property of all networks that follow compositional network architecture in a prescriptive sense. If so, it does not need to be verified. It is worth noting that Forwarding transparency is also required in the example of §6.3.1, which was not apparent, simply because we did not go into as much detail. It is also worth noting—even emphasizing—that in networks with packet rewriting, forwarding transparency or its equivalent might be extremely difficult to verify.

6.3.3. Example: Flow-affinity overlay

Our third example concerns security filtering in an Internet access network. The network might look like Figure 6.7. Near every gateway, there is a filter for packets entering the network at the gateway. The gray packet in flow A does not require filtering, and is simply routed through the network from one gateway to another. The red packet in flow B matches the filtering criteria, so it is forwarded through its ingress gateway’s filter before forwarding through the rest of the network.

[image:]
FIGURE 6.7. An access network with security filtering.

[image:]
FIGURE 6.8. An access network with security filtering with flow affinity. To allow a linear drawing of the access network, gateways 1 and 2 and forwarder Y all appear twice.

Unfortunately, for some kinds of filtering this simple design is not adequate, because correct filtering requires flow affinity—all packets of a particular flow (a set of sessions) must pass through the same stateful filter instance, even though they don’t all enter the network at the same gateway. Flow affinity could be added directly to the network in Figure 6.7, but at great cost in terms of the complexity of its routing. The existing routing already has to deal with failures, configuration changes, and fluctuating loads, and the network administration does not want to make it even more complicated.

As an easier alternative, flow affinity can be added to the network as an overlay, composed with subduction. For the reasons explained in §5.5.4.1, the overlay is a virtual island network. Naturally the goal of the design is to filter each flow near a gateway where most of its packets enter or leave the network. However, to make a clearer illustration of what is going on, Figure 6.8 shows the path of a packet in flow B for which this strategy is not working well. At the machine of filter 1, the packet enters the overlay network through a shared link. All overlay members keep track of where flows are being filtered, and know that flow B is filtered in filter 2. In the overlay, filter 1 forwards the packet to filter 2 on a direct virtual link. Provided that the packet is not dropped by filter 2, it re-enters the access network through a shared link from filter 2, and is then forwarded in the access network to its destination.

Verification of this solution must include verification of correctness properties of the flow-affinity overlay. These are simple and easy to verify, at least until we introduce the complication of moving a badly placed flow from one filter to another (a flow is badly placed if too few of its packets enter or leave the network at its adjacent gateway). To do this, it is necessary to migrate the state for that flow, as well as to update overlay routing.

The real challenge here is to prove that the overlay does not alter the access network’s behavior in any unintended way. The first step is to define what we mean by the access network’s behavior, so we know what must be preserved. In this example, gateways of the access network can drop incoming packets for simple, stateless reasons (e.g., they have invalid source names). Except for this filtering, the access network simply forwards packets to their destinations, without additional intervention. With this knowledge, the behavior of the access network can be defined formally in a reachability relation something like this:

endToEndReachability:networkHeader→inBridgingLink→outBridgingLink

where a tuple (h, i, o) is in the relation if and only if a packet with network header h, received by the network on link i, is forwarded out link o. Now the property we need to hold is:

Behavior preservation: Assuming that filters in the flow-affinity overlay do not alter or discard packets, endToEndReachability of the access network is the same regardless of whether it is composed with the flow-affinity overlay or not.

Needless to say, we do intend for the filters to alter or discard some packets, but these effects must be logically separated. For verification of Behavior preservation, we assume filters that forward all packets transparently.

The second step is to verify the Behavior preservation property. Unlike the first two examples in §6.3, there is no nice separation of concerns: To verify that a particular access network and flow-affinity overlay have this property, it is necessary to consider the two networks as composed by subduction. A theorem in the formal model states that networks composed with subduction satisfy all the properties of bridging and all the properties of layering. This is good because Behavior preservation is about reachability, which is determined by routing and forwarding, so only the properties of bridging are relevant. There is another helpful theorem in the formal model stating that the bridging of a set of networks is equivalent to a network. So, theoretically speaking, we can simply analyze the forwarding tables of the access network and flow-affinity overlay, together, for reachability. Practically speaking, however, this gives us no help with scale—the computation will be harder than computing reachability in the access network alone.

Verifying forwarding tables of real networks may not be the right way to solve this problem. Another approach is to use the formal model of compositional network architecture. In this approach, we specialize the formal model to state that a network ecosystem contains two networks, composed with subduction. The overlay is specialized to be a network that enforces flow affinity, although the particular mapping of flows to filters is left unspecified. The underlay is constrained much less, but has enough constraints to make it behave as an access network. The result is a model that is specialized, but still general enough to describe any access network with a flow-affinity overlay.

The next step is to prove a theorem that the model satisfies the Behavior preservation property. This work can be done with the support of automated tools.2 In attempting to prove the theorem, we learn that the access network (by itself) must forward every external packet to the same destination, regardless of which bridging link it entered the network from. With this assumption about the behavior of the access network, the theorem can be proved. Now all that is needed to prove that a real instance of this model satisfies the property of Behavior preservation is to show, with analysis of the real access network’s forwarding tables, that it satisfies the theorem’s assumption. This is easier than analysis to prove Behavior preservation directly, because the property is defined in absolute terms on one network of one network ecosystem, rather than being defined by comparing the arbitrary behaviors of two network ecosystems.

6.3.4. A research agenda for modular verification and security

§6.3 so far has shown examples of user-level service properties, many of them related to security, and their verification. Almost all verification is confined to the scope of a single virtual network. The crucial property of Forwarding transparency need not be verified, as it is guaranteed in any network that follows the rules of compositional network architecture in a prescriptive sense.

These examples show enough potential to justify further research on modularity in compositional network architecture, and its applications to verification and security. In general there are two topics, to be studied in parallel as each should inform the other. One topic concerns the application of these ideas to real networks, to answer such questions as:

	Can service properties of real network architectures be specified in this abstract and modular way?

	Is real analysis confined to individual networks, and does this make it scalable?

	Does modularity of networks and their data planes carry over into modularity of their control planes? Ultimately we should be verifying the control planes that populate forwarding tables, instead of analyzing the tables themselves (see also §6.5).

	Is automated checking of expected properties at network boundaries feasible? Would it reduce real security threats?

The other major topic concerns verification tools tailored for use in networking. Because compositional network architecture is so general, it provides a common language that can be leveraged to compare, unify, and extend existing network-specific tools. In the same way, it might help to formalize the interfaces between very different verification technologies, for example the interfaces between proofs of cryptographic algorithms and analyses of forwarding in networks. The seams joining these forms of verification should be tight, with no room for security vulnerabilities.

6.4. Principles of network architecture

If current trends continue, the diversity of virtual edge networks (and virtual island networks) in the Internet ecosystem will continue to increase. Although each user session in the Internet invokes its own particular mix of virtual networks, the average number of virtual networks invoked by a session may also increase. We can also expect further integration of distributed systems and networking. For example, the all-important problem of consistency in replicated databases is intertwined with the properties of network transmission, and sometimes enhanced network services can provide new solutions to it (e.g., [69]).

These evolutionary trends give new urgency to old questions: What is the best overall architecture for the Internet? What arrangement of layers, with specific responsibilities assigned to each, is ideal? How can undesirable interactions among network features be avoided? Are control planes as modular as data planes, or is some coupling desirable in some situations? The precision of compositional network architecture may allow these questions to be studied at a deeper level than was previously possible. And even though the tussle principles argue against a single mandatory architecture, there may be a happy architectural medium between complete anarchy and complete rigidity.

These are exciting topics for research. In this section we aim to start the ball rolling with a few observations drawn from the examples in the book.

6.4.1. Middleboxes

Sometimes the best place to attack a complex problem is in the middle, and so we shall—with middleboxes. As noted throughout the book, middleboxes are essential to providing many enhanced network services, and they are ubiquitous in today’s Internet ecosystem, including the base Internet.

One implication of the new end-to-end principle is that there should be as few middleboxes in the base Internet as possible. Unnecessary middleboxes in the base Internet violate the end-to-end principle because any middlebox increases costs while decreasing performance and reliability. But there are also more subtle problems that make arbitrary middleboxes an obstacle to evolution.

To illustrate these problems, we use the example of Multipath TCP [32, 71, 88], which is a well-engineered TCP extension for multi-path operation—meaning that TCP subsessions can be transmitted over multiple paths simultaneously. Deploying Multipath TCP has been amazingly difficult [71], partially because Multipath TCP requires extra control information that is stored in the TCP-options field of TCP headers. Even though TCP options are recognized as a standard part of TCP, many middleboxes reject packets with TCP options, or remove options from packets. As a result, the Multipath TCP setup handshake with destination port 80, embedding HTTP, failed (in the experiments of [71]) on 14% of all paths, and there was no way to distinguish which paths would fail without actually trying them.

On a deeper level, Internet middleboxes often rewrite TCP byte sequence numbers, and reject TCP byte streams with non-contiguous sequence numbers. This makes Multipath TCP far more complicated than it needs to be. The easiest way to distribute bytes over multiple subsessions is to send the first chunk in the first subsession, the second chunk in the second subsession, etc. Bytes from all subsessions are assembled at the receiving endpoint. Also, when an endpoint is distributing bytes over multiple subsessions, because of path failure, there is no guarantee that a retransmitted chunk will be sent in the same subsession as the original chunk. The point is that today’s middleboxes may reject the resulting non-contiguous byte streams, or change the sequence numbers so that reconstruction is impossible. As a result, Multipath TCP requires subsession sequence numbers as well as session sequence numbers, with elaborate mappings between them. Data for these elaborate mappings is much of the content of the TCP options discussed in the previous paragraph.

These examples make it clear why middleboxes in the base Internet are an obstacle to evolution, but what is the solution? After all, middleboxes are altering some packets and prohibiting others for good reasons, usually related to security.

We believe that the way forward requires moving middleboxes out of the base Internet and into virtual edge networks, in accordance with the new end-to-end principle. This has two important advantages. The first advantage is that endpoints usually select the virtual edge networks they participate in, which means that endpoints have some knowledge of and control over the middleboxes that their packets will go through. This reduces the unpredictability of failures due to middleboxes.

The other advantage is that virtual networks offer some hope of managing the trade-off between security on the one hand, and generality and evolution on the other. A virtual network can be a controlled environment in which middleboxes are trusted infrastructure members, and security policies are enforceable through network mechanisms such as forwarding rules. For example, there is no need for a middlebox to blindly remove TCP options from packets, if there is sure to be another middlebox in the packets’ path that will analyze packets deeply enough to determine whether the options are a threat or not. Other examples of security and privacy measures in virtual edge networks were given in §5.8.2 and, of course, in §6.3.

Increasingly, the technology exists to verify middleboxes (e.g., [90]), but the verification is only as good as the specified properties it is verifying. Even specification of a middlebox’s intended function may fall short in covering its negative side-effects: Which sessions does it cause to fail, and which services does it preclude? For many middleboxes in the base Internet, the negative side-effects are too serious, but the same functions might be deployed harmlessly within the context of a virtual edge network.

6.4.2. Reliable delivery and mobility

Reliable delivery and mobility properties interact in intriguing ways, which shed some light on the relationships among networks in a layered architecture. Any composition of networks in the Internet ecosystem should be designed with these interactions in mind.

Reliable delivery is a session property, as defined in §2.2.5.3. A session is made reliable through the functions of its session protocol, which detects lost packets and causes them to be retransmitted. The best-known session protocol with reliable delivery, of course, is TCP.

Reliable delivery can be useful at multiple levels of a layered architecture. For example, consider a TCP session in which one endpoint is a mobile device, so the physical network closest to the device is a radio network of some kind. Packets from one end of the TCP session to the other will travel over multiple links in multiple physical networks. The radio network has a high probability of packet loss, and therefore its session protocol detects and retransmits lost packets. It would not be good to depend on TCP reliable delivery alone, because failures in the radio network would cause retransmission of lost packets along the entire physical path, instead of just in the radio network. It would also not be sufficient to depend on reliable delivery in the radio network alone, because it could not recover from packet loss in other places in the path.

On the other hand, reliable-delivery mechanisms at two different levels can interact badly. This happens occasionally when packets of a TCP session travel over a link of a virtual network, and the link itself is implemented by a TCP session. The problem actually depends on multiple factors (latency, failure-detection timeouts, buffer sizes, and how acknowledgments are sent) [41], but we can give a rough explanation in terms of timeouts. Imagine that the lower-level TCP implementation has a longer failure-detection timeout than the upper-level TCP implementation. When loss is detected at the lower level and the protocol requests retransmission, the upper level has already detected the loss and requested its own retransmission. So there are two retransmissions for one loss; if the loss rate is high the extra traffic can compound the problem and create a performance degradation called “TCP meltdown.”

One straightforward solution to such problems is to ensure that failure detection and recovery at a lower level is faster than overlapping functions at higher levels. Then higher-level mechanisms will detect and handle failures only when the lower-level mechanisms cannot. In the example of a radio network implementing one link in the path of a TCP session, the constraint on timing is natural, because latency on the radio link is only one component of latency over the whole path of the TCP session.

Mobility interacts with reliability because it always carries a significant risk of packet loss. Whether mobility is implemented by changes in routing (dynamic-routing mobility) or by an endpoint’s name change and notification through the same session protocol (session-location mobility), the effect will be the same. The path of session packets will change mid-session, and transient inconsistencies in the network and session state can cause packets to go astray.

The implication is that if any session in a network architecture has reliable delivery, mobility for the packets of that session (if any) should be implemented in the same network or a network below it in the layering hierarchy, so that the delivery mechanism can restore any packets lost due to mobility. Figure 6.9 illustrates this rule.

[image:]
FIGURE 6.9. Illustration of a constraint on where reliable delivery and mobility are placed in a layering hierarchy.

In Figure 6.9, the radio network has innate mobility, needing no support from logical network mechanisms. As described above, the session protocol in the radio network implements reliable delivery.

In the application network above it, the TCP session implements reliable delivery. There are two ways its endpoints A and B could be mobile, and both are illustrated in the same session view. First, in the application network M and B could be connected by a path of members and links, and the entire network might offer dynamic-routing mobility for either endpoint. Second, M and B could be connected by a virtual link, and that virtual link could be maintained despite mobility by session-location mobility in the underlay. Either way, mobility is implemented in the same network as TCP, or in a network below it in the layering hierarchy.

This architecture has an implication worth noticing. Assume that mobility of A or B is provided by DRM in the application network. Over time, the path between A and B may change so much that neither M nor any radio link is still part of it. In this case services in the radio network will no longer be relevant to the TCP session, but services in some other underlay network may be. The constraint on reliable delivery, mobility, and layering ensures that all such interactions are equally benign.

6.4.3. Routing and congestion control

Within a network, two major mechanisms affect the allocation of bandwidth. Network routing allocates bandwidth, while session protocols also participate by performing congestion control. Congestion control and network routing interact with each other, as we discussed in §4.3.3.

The same section explained that when one network is layered on another, resource allocation in the two networks interacts implicitly, because the traffic on the overlay links is exactly the same traffic that is transmitted in their implementing underlay sessions. §4.3.3.2 gave several examples of how this interaction is managed for IP overlays and MPLS underlays, where the networks are designed together and the interaction is carefully tuned.

Can we generalize from experience and draw any larger conclusions for layering of networks that are not so carefully co-designed? Let’s gather both routing and congestion control into a general category of mechanisms that allocate bandwidth within a network. We can think of the interaction of all these mechanisms, both within networks and across layered networks, in terms of what triggers allocation changes. In the worst-case scenario, when multiple allocation mechanisms apply concurrently, many of the individual changes made by one mechanism trigger changes in another mechanism. This might mean that changes would propagate in a circular pattern, creating instability.

How can this worst-case scenario be avoided? Often, allocation mechanisms monitor network operations and re-evaluate their choices at regular time intervals. If two networks have mechanisms triggered at different time intervals, then the slower one cannot be triggered faster, regardless of how much change there is. This is some help, but it raises as many questions as it answers. What should the time intervals be? What if the resulting mechanisms react too slowly to important changes?

In a hierarchy of layered networks, traffic from many higher-level networks tends to share the bandwidth of fewer lower-level networks. Individual changes affecting small volumes of traffic are unlikely to trigger changes affecting large volumes of traffic. Rather, the big changes occur only when there is an aggregation of many small changes.

Taking advantage of this natural relationship, resource-allocation time intervals should be shorter at higher levels and longer at lower levels. Individual changes at higher levels, affecting a small amount of traffic, are unlikely to necessitate changes at lower levels—and therefore unlikely to mean that lower levels are reacting too slowly. Lower levels react, on a slower timescale, to many cumulative changes at higher levels. In the opposite direction, lower-level changes may necessitate higher-level changes, but at least the propagation will be one-way rather than circular.

6.5. Implementation and optimization

6.5.1. A research agenda for modular implementation and optimization

§6.3.4 introduced research questions to explore how modularity can be exploited for verification and security. Even better than verification, however, would be to exploit modularity by synthesizing correct-by-construction optimized implementations of composable networks.

To do this, it would first be necessary to have a good language for specifying facts, assumptions, requirements, and goals for a network, as outlined in §2.6. Some aspects of the network’s design might also be supplied—whatever is best for a productive division of labor between human and machine. Realization of the specification would entail some code synthesis and some reuse of verified components. As with verification, we currently know more about organization and modularity of data planes than of control planes.

Independently of verification or synthesis, there is much to learn about optimization. How can new modes of network implementation, for example user-space packet processing, programmable infrastructure machines, and programmable NICs on user machines, be leveraged to preserve modular structure without loss of efficiency? Do they lead to reusable implementations of common network mechanisms such as composition operators? How can existing implementations be refactored for simplification and reuse?

These ideas have been explored, in a rudimentary way, with an implementation of compositional network architecture in P4 [16]. The P4 program compiles to hardware stages on a programmable packet-processing chip. The next subsection presents a few ideas about optimization, illustrated by this prototype implementation.

6.5.2. Example: Optimization of a programmable pipeline

Optimization is ubiquitous in networks, and we do not expect readers of this book to forget it. So far this book has only covered optimizations achieved by adding something to a networking environment, such as middleboxes. But networks are also optimized by removing unnecessary things.

In this section we consider optimization by removal of excess generality. We have argued for the use of compositional network architecture in network implementation, because it provides explicit structure supporting modularity, reuse, security, and verification and/or synthesis. Another attribute of the new model is that it is intended to be general. This is both good—if implementation structures are as general as possible, then they are easily extended to add new functions—and bad, because unnecessary generality consumes unnecessary bandwidth, storage space, and processing time. So there are good reasons for optimizing networks by removing excess generality, if it can be done safely.

To illustrate this, we return to the example in Figure 6.2. The diagram on the left side of Figure 6.10 shows hardware pipeline stages of the P4 implementation, implementing network members in the middle machine of Figure 6.2, which hosts the overlay forwarder M. In each pipeline stage, a packet is matched against one table, and the processor performs the action as parameterized by the table entry. The table entry may also select the next hardware stage to process the packet; in this diagram hardware stages with multiple out-arrows make such selections.

[image:]
FIGURE 6.10. A prototype implementation of compositional network architecture. Both diagrams show the hardware pipeline stages on the middle machine of Figure 6.2. In each diagram, the path of red arrows is the path traversed by the packets described in Figure 6.2. Optimization converts the eight-stage pipeline on the left to four stages on the right.

The stages in Figure 6.10 show more actions and tables than were apparent in Figure 6.2. Figure 6.2 is confined to layering, while Figure 6.10 includes intra-network actions as well. Whenever a packet is acquired on an incoming link, the Acquire action selects whether it is received or forwarded at this network member. If it is received, the Receive action selects whether it is received in this network (in which case it goes to the operating system of the machine) or acquired on an overlay link. Whenever a packet is transmitted on an outgoing link, the Transmit action selects whether it is transmitted on a physical outgoing link, or sent in an underlay session implementing a virtual link. The operating system of the machine can also Send underlay packets.

The diagram on the left side of Figure 6.10 is more general than this machine needs. What happens if we encode the knowledge that all links in the overlay are virtual rather than physical? What about the knowledge that the underlay member on this machine is only a user member of the underlay, and does not send or receive control messages on its own behalf? Together they eliminate much of the logical branching, and enable the optimized pipeline on the right side of the diagram, in which four hardware stages replace the previous eight. This is possible because: (i) there is only one entry point to Overlay Acquire, so it can be combined with its entry point; (ii) the pipeline from Overlay Forward to Underlay Send has no internal branching; (iii) Underlay Transmit is vestigial, as the forwarding stage chooses the physical outgoing link.

In each of the combined stages, the match-action table is a join of the original tables, which means that after optimization tables are no longer partitioned by network boundaries. Most of the relations encoded by the original tables are functions; as a result, the joined tables have no more entries than the longest original table from which they are formed. This example shows that when a general-purpose structure is being optimized with special-case assumptions, it does not take many assumptions to get a significant payoff.

Now we come to the question of when and how to apply such optimizations, which means managing the trade-off between generality and optimization. The P4 example is nice because optimization comes late in the development process, and can be largely automated. On the other hand, optimization of the P4 code requires changes to the format of match-action tables, which are computed separately by a network’s control plane. Depending on the nature of the control plane, and especially on how dynamic the tables are, changing that code might be more difficult.

In summary, there seem to be two principles for safe optimization. First, designers and developers should not remove generality without understanding what functions they are precluding. Second, optimizations should be as reversible as possible, to prepare for a future in which extensibility becomes more important.

6.6. Thoughts on teaching networking

In most universities, undergraduate and graduate students have very different courses on networking. Undergraduates study from textbooks organized around the classic Internet architecture, covered either bottom-up or top-down. Graduate students do not have textbooks, but rather read and discuss important research papers. Because these two audiences are taught so differently, we will consider them separately, graduate students first.

Graduate students must read research papers to learn how to do their own research. We know from our own experience that, when approaching research in an unfamiliar area, it helps tremendously to have some context for it. The context helps us understand what fundamental problem the research is trying to solve and why the problem exists in the first place—and these may not be stated in the paper, simply because readers working in the area already know them. The context also tells us what subproblems must be solved to get an overall solution, what the relevant trade-offs are, and what the limitations of a solution might be, so that we can look for them in the paper.

Our own experience also tells us that compositional network architecture provides much of this context for research in networking. For this reason, it might work well to use this book as a textbook in graduate networking courses. It is short enough to be read before research papers, rather than replacing them as textbooks usually do. Also, for students from varied backgrounds who have not taken an undergraduate networking course, Chapters 2 and 3 give them a quick summary of the basics.

For undergraduates, teaching the classic Internet architecture is both relevant—it is a subset of the real Internet architecture—and concrete. On the other hand, this approach gives rise to some common complaints. Teachers want to keep their courses up-to-date, but most of the new material is an exception to the classic Internet architecture and does not fit the outline. Certain topics like MPLS networks, mobility, and cloud computing may be just too confusing. For teachers, it is increasingly difficult to find enough room in the curriculum for new topics. Students may feel they are drowning in acronyms.

We believe that compositional network architecture offers some relief from these problems, if only because it provides some sound abstractions, pulling away from details without losing fundamental properties and relationships. In other words, it provides a framework students can use to organize their growing knowledge. This should help with the content overload, as some topics can be presented briefly but still meaningfully, if necessary. It should also help to explain the fundamentals of complex topics in a less confusing way.

The new model might be introduced to undergraduate students either after a full treatment of the classic Internet architecture, as in a graduate course that follows an undergraduate course, or intertwined with a briefer presentation of Internet basics, as in our Chapters 2 and 3. After that foundation, it should be possible to cover further material organized around basic network functions such as routing and forwarding, session protocols, middleboxes, and directories. These topics could be taught in terms of patterns: What the problem is, why it recurs in multiple places in a network architecture, and how it can be solved in multiple ways. Then the solutions can be compared and contrasted.

In summary, we hope this book provides other teachers with food for thought, and that we can all cooperate in experimenting with better ways to teach our subject.

Finally, John Day’s seminal book Patterns in Network Architecture [26] deserves a special mention because it informed and inspired us—not least for the idea of patterns itself. (We wish we could steal his title.) Ultimately, however, Day’s book seems to be most concerned with finding a single universal solution to the problems of networking. Our approach is to celebrate diversity in network architecture, both because that is the reality of networking today, and because we believe it is more likely to succeed in providing the world with an ever-improving Internet.

6.7. Conclusion

In Chapter 1, we promised to describe the real Internet architecture, and how it has evolved to its current state. We also promised to propose ways to guide and expedite future evolution, while steadily improving quality. We said we would offer a new version of the Internet’s end-to-end principle, and identify many patterns for network architecture and design.

We hope you have enjoyed this tour of compositional network architecture (CNA), and feel that we have kept our promises. We hope that the book has satisfied the itch of intellectual curiosity, and perhaps created a thirst for even deeper understanding of some of the topics covered here. For the formal model of CNA, along with implementation and educational information as they develop, please see our Web site at compositionalnetarch.org.

There are several ways in which we hope you, the reader of this book, will be influenced by it in the future. First, the patterns. This book introduces many patterns—each a recurring problem and a family of related solutions. There is much to add to our superficial treatment of each pattern in the book, and there are doubtless many more to find. For individual research projects, patterns should help expand their applicability, by identifying where else in network architectures the same problems arise. For the benefit of research progress as a whole, patterns should help to consolidate and generalize results. For example, the range of solutions captured in a pattern can often be arranged in a “design space” with well-defined, possibly quantitative, dimensions. This would help in relating results from different experiments, and should ultimately clarify engineering trade-offs.

In §6.6, we already expressed our thoughts on teaching, and our hopes for community experimentation on the uses of new abstractions in the teaching of networking.

Compositional network architecture is a rigorous model, much of which has already been formalized, and more of which will be formalized in the future. Regardless of how you work with networks, this has fundamental value in helping to predict how resilient any piece of a networking technology will be to future evolution. It is also an opportunity for community effort and progress, as the more people who adopt the model to at least explain their work, and better yet to guide it, the more compatibility and interoperation there can be. For researchers, there may be an opportunity to develop coordinated tools and build more closely on each others’ work. We hope that reading this book has inspired you to think about how community effort focused by a common understanding of network architecture can help make a better Internet, one with the trustworthiness to meet society’s needs.

Finally, compositional network architecture is a new lens through which to view familiar things, and it has been designed to minimize unnecessary constraints on how network features combine. Many times, it has surprised and delighted us with the unsuspected causes and effects it reveals. Although we know there are few things new under the sun, there is always a possibility that better imaginations will be stimulated by it—and discover new uses for architectural freedom, and new solutions to stubborn practical problems.

We hope to make our Web site at compositionalnetarch.org a central depot for progress reports and contributions of all these kinds, so please keep in touch.

1. These constraints apply to fields in packet headers that are customarily chosen by session endpoints, not to forwarding-specific fields such as time-to-live fields.

2. The two major automated reasoning methods are deduction and exhaustive enumeration of a bounded set of possibilities. Both methods have been widely successful.

GLOSSARY

acceptor     2.2.5.2

For an autonomous point-to-point session, its acceptor is the network member that received a setup request for the session and accepted it (responded positively). If the session is implementing a dynamic link in an overlay, the overlay member on the same machine can be considered the acceptor of the link.

access network     3.2.2

An access network is a transit network of the Internet. It is distinguished from other transit networks because it bridges directly with edge networks. Among transit networks, it is an extreme on a spectrum from access networks to core networks, tending to have many low-speed links.

administrative authority     2.2.3

The administrative authority of a network is a person or organization (a legal person) that controls the network, takes responsibility for it, and provides resources for it.

allcast     5.4.2.1

Allcast used in any context is a generalization combining broadcast and multicast.

anycast service     2.2.1

Anycast service is a network service that delivers each packet to one member of a group of destinations.

attachment     3.3.1

An attachment of a network member is a member of another network on the same machine, such that the first network member gets network service from the second network member.

autonomous session     2.2.5.2

An autonomous session is created when needed by its own endpoints. If a session is not autonomous, it might be static and created by network configuration, or its state might be set up beforehand by network members on the same machines as its endpoints.

availability     2.6.2.1

Availability is a performance property of a network service. It is usually measured as the percentage of time that the network service is available to its users.

bandwidth     2.6.2.1

Bandwidth is a performance property of a network service or link. Bandwidth is the amount of traffic that is or can be carried, measured in bits or bytes per second.

base Internet     4.2.1

The base Internet consists of the lowest-level IP networks of the Internet ecosystem, bridged together at various points.

blocking     2.6.3.1

Blocking properties are service properties prohibiting some members from reaching other members. Blocking properties are the negations of reachability properties.

bridging, bridging link     3.2.1

Bridging is an operator for composing networks with similar designs. Two bridged networks have one or more links that cross the boundary between them, so the bridging links belong to both networks.

broadcast service, link, session     2.2.1, 2.2.2.3, 5.4.2.2

Broadcast service is a network service that delivers a replica of each packet to each member of a group of destinations. The group is defined structurally, and usually consists of all members of a network. A physical or virtual broadcast link is a link that delivers a replica of each packet to all members of the group. A broadcast session is a session in which all messages use broadcast delivery. It is a true multi-endpoint session.

compound session     3.2.3

A compound session is a session formed at a proxy by joining one or more simple sessions. The proxy relays packets from one simple session to its joined session so that the compound session behaves like a simple session as observed by its endpoints.

core network     3.2.2

A core network is a transit network of the Internet. Among transit networks, it is an extreme on a spectrum from access networks to core networks, tending to have few high-speed links.

data confidentiality     2.2.5.3

A session [or link] has the property of data confidentiality if no agent other than an endpoint can read packets in the session [on the link].

data integrity     2.2.5.3

A session or link has the property of data integrity if no agent other than an endpoint can insert packets into the session [onto the link], or modify or replay session [link] packets.

destination field     2.2.4.2

A destination field is the field of a network header containing the name of the packet’s destination.

directory     3.3.2

A directory is a data structure mapping member names in one network to the names of their attachments in another network. A directory is always needed when one network is layered on another, naming of machines in the two networks is different, and dynamic links and sessions must be set up.

distributed system     2.2.1

A distributed system is a computer system with cooperating modules running on multiple machines.

dynamic-routing mobility     5.6.1, 5.6.2

Dynamic-routing mobility is a pattern for implementing mobility service. In these solutions to the problem, a network member changes its lower-level network attachment without changing its name in the network with mobility service. To implement mobility, network routing must be updated dynamically to reach the member at its new location.

edge network     3.2.2

An edge network is a network of the Internet. It is distinguished from transit networks of the Internet because it only carries packets to or from its own members.

endpoint authentication     2.2.5.3

A session or link has the property of endpoint authentication if one endpoint can be certain of another endpoint’s identity.

forward, forwarding     2.2.4

A network member forwards when it receives a packet from one link and sends it out on another link, usually for the purpose of getting the packet closer to its destination. Forwarding refers to what a network member does when it forwards.

forwarder     2.2.4

A forwarder is a network infrastructure member whose primary purpose is forwarding.

forwarding protocol     2.2.4.2

A forwarding protocol is a set of rules governing forwarding in a network. Most importantly, a forwarding protocol defines the format of packets in the network.

forwarding table, forwarding rule     2.2.4.1, 2.2.4.2

A forwarding table is state in a network member telling it how to forward packets. The rows of a forwarding table are forwarding rules. Each rule applies to a different subset of incoming packets.

gateway     3.2.1

A gateway is a network forwarder that exchanges packets with other networks. It is an endpoint of one or more bridging links.

group name     2.2.2.2

A group name is a name that is assigned to multiple members of a network. Group names are used as the destinations of packets delivered by anycast, broadcast, or multicast services.

infrastructure member     2.2.3

An infrastructure member of a network is a member owned or controlled by the network’s administrative authority and present to implement network services.

initiator     2.2.5.2

For an autonomous point-to-point session, its initiator is the network member that initiated setup of the session. If the session is implementing a dynamic link in an overlay, the overlay member on the same machine can be considered the initiator of the link.

interoperation proxy     3.2.5

An interoperation proxy is a proxy with two halves that are members of two different networks with different designs. The proxy joins sessions from heterogeneous networks.

jitter     2.6.2.1

Jitter is a performance property of a network service or link. It is the amount of variation in packet latency.

join table     3.2.3

A join table is state in a proxy that stores which sessions are joined with which other sessions to make compound sessions.

latency     2.6.2.1

Latency is a performance property of a network service or link. It is the amount of time it takes for a packet to be delivered. Latency is often measured as a round-trip time.

layering     3.3.1

Layering is a composition operator on networks, in which a link in one network (the overlay) is implemented by a session in another network (the underlay).

link     2.2.2.3

A link is a communication channel connecting two or more members of a network.

link identifier     2.2.2.3

A link identifier is an identifier, local to a member of a network, identifying one of the links of which this member is an endpoint.

loss rate     2.6.2.1

Loss rate is a performance property of a network service or link. It is the percentage of packets that are lost during transmission, or equivalently, the probability of packet loss.

machine     2.2.1

A machine is a computer or computerized device.

member     2.2.2.1

A member of a network is a functional unit of hardware and/or software on a machine, dedicated to participating in the network. Regarding a network as a distributed system, a member is its module on a particular machine.

message     2.2.1, 2.2.5.1

A message is a semantic unit of communication, as defined in a session protocol.

middlebox     2.2.4.1

A middlebox is a network member, other than a forwarder, inserted in the paths of some packets.

mobility     2.2.5.3

A session or link has the property of mobility if it can persist even as one or more endpoints are moving through space and changing their network attachments.

multicast service, link, session     2.2.1, 5.4.2.2

Multicast service is a network service that delivers a replica of each packet to each member of a group of destinations. The group is like a special-interest group, in that network members can join or leave at will. A virtual multicast link is a link that delivers a replica of each packet to all members of the group. A multicast session is a session in which all messages use multicast delivery. It is a true multi-endpoint session.

name, namespace     2.2.2.2

A name is an identifying string associated with a member of a network. A network’s namespace is a syntactic set from which all its names are drawn.

network     2.2.1

A network is a distributed system with the purpose of providing communication services to other distributed systems. It is also a module in a networking environment or network ecosystem.

network ecosystem     1.5.1

A composition of networks, each with its own purpose, geographical span, membership scope, and level of abstraction. Synonymous with networking environment.

network header, network footer     2.2.4.2

The forwarding protocol of a network determines the format for a network header, which is the first header on all packets transmitted through the network. The network’s packet format can also include a network footer at the end of the packet.

network service     2.2.1

A network service is a communication service used by the modules of a distributed system to communicate. Formally, a network service is a set of packets that the network will carry, and one or more properties that must be satisfied by how the network handles and delivers these packets.

networking environment     1.5.1

A composition of networks, each with its own purpose, geographical span, membership scope, and level of abstraction. Synonymous with network ecosystem.

ordered delivery     2.2.5.3

A session or link has the property of ordered delivery if packets are delivered in the same order they were sent.

overlay field     2.2.5.4

An overlay field is the field of a network header that indicates the network or distributed system on behalf of which this packet is being transmitted.

packet     2.2.2.3

A packet is the unit of transmission on a network link. A message travels through a network in one or more packets.

pattern     1.5.3.3

A pattern in networking is a problem common to many different networks or network services, along with a range of related solutions.

payload     2.2.5.1

Payload refers to the part of a packet or message after the network header and session headers, and before the network footer or session footers (if any).

persistence     2.2.5.3

A session or link has the property of persistence if it lasts as long as its endpoints want it to, regardless of network disruptions.

point-to-point service, link, session     2.2.1, 2.2.2.3, 2.2.5.2

Point-to-point service is a network service that delivers each message to one uniquely named member. A physical or virtual point-to-point link is a link connecting two members of a network. A point-to-point session is a session with two endpoints. Point-to-point links and sessions can be one-way or two-way.

protocol embedding     2.2.5.4, 5.4.4

Protocol embedding is a form of service composition, in which session protocols are composed so that the same session can benefit from the services of multiple protocols.

proxy     3.2.3

A proxy is a middlebox that joins simple sessions to make compound sessions, or joins compound sessions to make longer compound sessions. The proxy relays packets from one session to its joined session so that the compound session behaves like a simple session as observed by its endpoints.

reachability     2.6.3.1

Reachability properties are service properties stating that particular members can reach other particular members through the network. Reachability properties are the negations of blocking properties.

reliable delivery     2.2.5.3

A session or link has the property of reliable delivery if every packet sent is delivered.

replica     5.4.2.2

A replica of a message is a copy created by network forwarding, often to implement broadcast or multicast service.

routing     2.2.4

Routing is the network function that decides on the paths that packets should take through a network, and that disseminates routing results among forwarders.

routing protocol     2.2.4.1

A routing protocol is a control protocol with which forwarders exchange routing information with other forwarders, and sometimes with other infrastructure members. In the case of distributed routing, usually no distinction is made between the routing protocol and the routing algorithm.

scope     2.6.1

The scope of a network is the set of machines participating in the network, i.e., the set of machines that are hosting members of the network.

service property     2.6

A service property of a network is defined on a set of packets that have entered or might enter the network. These are the packets that receive the service. The service property is a statement about how the network handles and delivers these packets.

session     2.2.5.1

A session is an instance of use of a network. Equally, a session is a set of messages that go together, from the viewpoint of users.

session endpoint     2.2.5.2

A session endpoint is a network member that is participating in a session and has state for the session.

session header, session footer     2.2.5.1

Every message has a session header. Its format is determined by the session protocol governing the session to which the message belongs. Some session protocols require a session footer as well.

session identification     2.2.5.1

Session identification is information in a packet header that uniquely identifies the packet’s session along the packet’s path. Session identification includes a session identifier, and may include other header fields.

session-identifier field     2.2.5.1

A session-identifier field is a field of a session header used primarily for session identification.

session-location mobility     5.6.1, 5.6.3

Session-location mobility is a pattern for implementing mobility service. In these related solutions to the problem, a member of a network with location-dependent names changes its lower-level network attachment, requiring it to change its name in the network with mobility service. Often it retains its name/identity in an overlay network. Either way, to preserve existing sessions, mobile session endpoints inform their correspondents of their new names.

session property     2.6.3.1

A session property is a service property in which the set of packets it applies to is the set of packets in a session.

session protocol     2.2.5.1

A session protocol is a set of rules governing a particular type of session, so that sessions of this type have particular properties. The rules can include message formats, message sequencing, and the required behavior of session endpoints.

session-protocol field     2.2.5.4

A session-protocol field is a field of a network header that selects the session protocol of the message being carried in the packet. If there is protocol embedding, it selects the outer session protocol.

session state     2.2.5.2

An endpoint of a session has session state to recognize incoming messages as belonging to the session. The state can also support other functions of the session protocol.

session view     2.2.2.5

A session view is a picture of a network as a graph, showing primarily a single session, with only members and links in the path of the session.

shared link     4.5.2.1

A shared link is a special kind of link used for subduction. At one end it is an ordinary link of an ordinary network member. At the other end it has two or more endpoints on the same machine, one being a member of an underlay, and the others being members of one or more overlays. At the shared end, sending to and receiving from the endpoints is governed by coordination mechanisms so that packet flow is deterministic.

simple session     3.2.3

A simple session is just a session. The term is used to distinguish it from a compound session it might be part of.

source field     2.2.4.2

A source field is the field of a network header containing the name of the packet’s source.

span     2.6.1

The span of a network is its geographical footprint, the area within which it connects machines.

subduction     4.5.2

Subduction is a composition operator on networks. It is a combination of bridging and layering, with extra coordination mechanisms, so that the composition satisfies all properties of both bridging and layering.

subsession     5.4.4.2

A subsession arises from protocol embedding. The messages of a session (of an inner session protocol) can be embedded in several different subsessions (of one or more outer session protocols). Each session message belongs to one subsession, and the union of subsession messages is the session.

topology view     2.2.2.5

A topology view is a picture of a network as a graph, showing primarily its topology or configuration of members and links.

traffic filtering     2.2.3

Traffic filtering is a security function performed by network infrastructure. In traffic filtering, networks detect and discard malicious or suspicious packets.

transit network     3.2.2

A transit network is a network of the Internet. It is distinguished from edge networks of the Internet because it carries packets on behalf of other networks.

unique name     2.2.2.2

A unique name is a name that identifies a member uniquely within a network.

user member     2.2.3

A user member of a network is a member that is not an infrastructure member. It belongs to the network for the purpose of using the network’s services.

BIBLIOGRAPHY

	    [1]  B. Abarbanel. Implementing global network mobility using BGP. NANOG 31, https://youtu.be/nTXJWr44aos, 2004. Accessed 30 November 2023.

	    [2]  A. Afanasyev, J. Burke, T. Refaei, L. Wang, B. Zhang, and L. Zhang. A brief introduction to Named Data Networking. In IEEE Military Communications Conference. IEEE, 2018.

	    [3]  S. Akhshabi and C. Dovrolis. The evolution of layered protocol stacks leads to an hourglass-shaped architecture. In Proceedings of SIGCOMM. ACM, 2011.

	    [4]  D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks. In Proceedings of the 18th Symposium on Operating Systems Principles. ACM, October 2001.

	    [5]  D. G. Andersen. Mayday: Distributed filtering for Internet services. In Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems, 2003.

	    [6]  D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and S. Shenker. Accountable Internet Protocol (AIP). In Proceedings of SIGCOMM. ACM, 2008.

	    [7]  M. Arye, E. Nordstrom, R. Kiefer, J. Rexford, and M. J. Freedman. A formally-verified migration protocol for mobile, multi-homed hosts. In Proceedings of the International Conference on Network Protocols, October/November 2012.

	    [8]  R. J. Atkinson and S. N. Bhatti. Identifier-Locator Network Protocol (ILNP) architectural description. Internet Research Task Force Request for Comments 6740, 2012.

	    [9]  H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and M. Walfish. A layered naming architecture for the Internet. In Proceedings of SIGCOMM. ACM, 2004.

	  [10]  H. Balakrishnan et al. Revitalizing the public Internet by making it extensible. ACM SIGCOMM Computer Communications Review, 51(2), April 2021.

	  [11]  D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szalachowski. The SCION Internet architecture. Communications of the ACM, 60(6):56–65, June 2017.

	  [12]  A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI veritas: Realistic and controlled network experimentation. In Proceedings of SIGCOMM. ACM, 2006.

	  [13]  R. Beckett and R. Mahajan. Capturing the state of research on network verification. https://netverify.fun/2-current-state-of-research. Accessed 30 November 2023.

	  [14]  T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: A cloud networking platform for enterprise applications. In Proceedings of the 2nd ACM Symposium on Cloud Computing, 2011.

	  [15]  M. S. Blumenthal and D. D. Clark. Rethinking the design of the Internet: The end-to-end arguments vs. the brave new world. ACM Transactions on Internet Technology, 1(1):70–109, August 2001.

	  [16]  P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming protocol-independent packet processors. ACM SIGCOMM Computer Communications Review, 44(3), July 2014.

	  [17]  B. Carpenter and B. Liu. Limited domains and Internet protocols. IETF Request for Comments 8799, 2020.

	  [18]  B. E. Carpenter, J. Crowcroft, and D. Trossen. Limited domains considered useful. ACM SIGCOMM Computer Communications Review, 51(3), July 2021.

	  [19]  V. Cerf, A. Leon-Garcia, J. Rexford, and A. Vahdat. National Science Foundation Panel: Future directions for Internet researchers. https://www.youtube.com/watch?v=Z8wDMuwaUfw, 2022. Accessed 30 November 2023.

	  [20]  M. Chiang. Networked Life: 20 Questions and Answers. Cambridge University Press, 2012.

	  [21]  M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE, 95(1):255–312, January 2007.

	  [22]  L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz, P. Müeller, and A. Perrig. The Complete Guide to SCION. Springer, 2022.

	  [23]  D. D. Clark. The design philosophy of the DARPA Internet protocols. In Proceedings of SIGCOMM. ACM, 1988.

	  [24]  D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in cyberspace: Defining tomorrow’s Internet. IEEE/ACM Transactions on Networking, 13(3):462–475, June 2005.

	  [25]  J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield. Plutarch: An argument for network pluralism. In Proceedings of the Workshop on Future Directions in Network Architecture. ACM SIGCOMM, 2003.

	  [26]  J. Day. Patterns in Network Architecture: A Return to Fundamentals. Prentice Hall, 2008.

	  [27]  R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. In Proceedings of the 13th USENIX Security Symposium, 2004.

	  [28]  K. Egevang and P. Francis. The IP Network Address Translator (NAT). IETF Network Working Group Request for Comments 1631, 1994.

	  [29]  N. Feamster, J. Rexford, and E. Zegura. The road to SDN: An intellectual history of programmable networks. ACM SIGCOMM Computer Communication Review, 44(2):87–98, 2014.

	  [30]  A. Feldmann. Internet clean-slate design: What and why? ACM SIGCOMM Computer Communication Review, 37(3):59–64, July 2007.

	  [31]  D. Fisher. A look behind the Future Internet Architectures efforts. ACM SIGCOMM Computer Communication Review, 44(3):46–49, July 2014.

	  [32]  A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP extensions for multipath operation with multiple addresses. IETF Request For Comments 6824, January 2013.

	  [33]  B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication across network address translators. In Proceedings of the USENIX Annual Technical Conference, 2005.

	  [34]  V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless inter-domain routing (CIDR): An address assignment and aggregation strategy. IETF Network Working Group Request for Comments 1519, 1993.

	  [35]  L. Gao and J. Rexford. Stable Internet routing without global coordination. IEEE/ACM Transactions on Networking, 9(6):681–692, December 2001.

	  [36]  Z. Gao, A. Venkataramani, J. Kurose, and S. Heimlicher. Towards a quantitative comparison of location-independent network architectures. In Proceedings of SIGCOMM. ACM, 2014.

	  [37]  A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel, and S. Sengupta. VL2: A scalable and flexible data center network. In Proceedings of SIGCOMM. ACM, 2009.

	  [38]  T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem and interdomain routing. IEEE/ACM Transactions on Networking, 10(2):232–243, 2002.

	  [39]  T. G. Griffin and J. L. Sobrinho. Metarouting. In Proceedings of SIGCOMM. ACM, 2005.

	  [40]  M. Handley. Why the Internet only just works. BT Technology Journal, 24(3):119–129, July 2006.

	  [41]  O. Honda, H. Ohsaki, M. Imase, M. Ishizuka, and J. Murayama. TCP over TCP: Effects of TCP tunneling on end-to-end throughput and latency. In Proceedings of SPIE, volume 6011, pages 138–146. International Society for Optical Engineering, 2005.

	  [42]  ITU. Information Technology—Open Systems Interconnection—Basic Reference Model: The basic model. ITU-T Recommendation X.200, 1994.

	  [43]  P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein. Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems, 2002.

	  [44]  A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay Services. In Proceedings of SIGCOMM. ACM, 2002.

	  [45]  C. Kim, M. Caesar, and J. Rexford. SEATTLE: A scalable Ethernet architecture for large enterprises. ACM Transactions on Computer Systems, 29(1), February 2011.

	  [46]  T. Koponen et al. Architecting for innovation. ACM SIGCOMM Computer Communications Review, 41(3), July 2011.

	  [47]  C. Krähenbühl, S. Tabaeiaghdaei, C. Gloor, J. Kwon, A. Perrig, D. Hausheer, and D. Roos. Deployment and scalability of an inter-domain multi-path routing infrastructure. In Proceedings of the 17th International Conference on emerging Networking EXperiments and Technologies (CoNEXT). ACM SIGCOMM, 2021.

	  [48]  J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down Approach, Seventh Edition. Pearson Education, Inc., 2017.

	  [49]  A. Langley et al. The QUIC transport protocol: Design and Internet-scale deployment. In Proceedings of SIGCOMM. ACM, 2017.

	  [50]  B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel, L. G. Roberts, and S. Wolff. Brief history of the internet. Internet Society, https://www.internetsociety.org/internet/history-internet/brief-history-internet, 1997. Accessed 30 November 2023.

	  [51]  L. Li, D. Alderson, W. Willinger, and J. Doyle. A first-principles approach to understanding the Internet’s router-level topology. In Proceedings of SIGCOMM. ACM, 2004.

	  [52]  T. Liu, C. Sadler, P. Zhang, and M. Martonosi. Implementing software on resource-constrained mobile sensors: Experiences with Impala and ZebraNet. In Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services, 2004.

	  [53]  M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and C. Wright. Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks. IETF Request for Comments 7348, 2014.

	  [54]  J. McCauley, S. Shenker, and G. Varghese. Extracting the essential simplicity of the Internet. Communications of the ACM, 66(2):64–74, February 2023.

	  [55]  R. Moskovitz and P. Nikander. Host identity protocol HIP architecture. IETF Network Working Group Request for Comments 4423, 2006.

	  [56]  J. Mysore and V. Bharghavan. A new multicasting-based architecture for Internet host mobility. In Proceedings of the 3rd Annual ACM/IEEE International conference on Mobile Computing and Networking, 1997.

	  [57]  R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat. PortLand: A scalable fault-tolerant layer 2 data center network fabric. In Proceedings of SIGCOMM. ACM, 2009.

	  [58]  A. R. Natal, L. Jakab, M. Portolés, V. Ermagan, P. Natarajan, F. Maino, D. Meyer, and A. C. Aparicio. LISP-MN: Mobile networking through LISP. Wireless Personal Communications, 70(1):253–266, May 2013.

	  [59]  National Research Council, Committee on Research Horizons in Networking. Looking over the Fence at Networks: A Neighbors’ View of Networking. National Academy Press, 2001.

	  [60]  D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and P. Steenkiste. And then there were more: Secure communication for more than two parties. In Proceedings of ACM CoNEXT, 2017.

	  [61]  D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. Lopez, K. Papagiannaki, P. R. Rodriguez, and P. Steenkiste. Multi-context TLS (mcTLS): Enabling secure in-network functionality in TLS. In Proceedings of SIGCOMM. ACM, 2015.

	  [62]  P. Nikander, A. Gurtov, and T. R. Henderson. Host identity protocol (HIP): Connectivity, mobility, multi-homing, security, and privacy over IPv4 and IPv6 networks. IEEE Communications Surveys and Tutorials, 12(2):186–204, April 2010.

	  [63]  C. Perkins, D. Johnson, and J. Arkko. Mobility support in IPv6. IETF Request for Comments 6275, July 2011.

	  [64]  C. E. Perkins. Mobile IP. IEEE Communications, May 1997.

	  [65]  C. E. Perkins. IP mobility support for IPv4. IETF Network Working Group Request for Comments 3344, 2002.

	  [66]  R. Perlman. Rbridges: Transparent routing. In Proceedings of IEEE INFOCOM, 2004.

	  [67]  L. Peterson and B. Davie. Computer Networks: A Systems Approach. Copyright Elsevier 2012, License CC BY 4.0, Source https://github.com/SystemsApproach.

	  [68]  L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the future Internet. In Proceedings of the 9th Workshop on Hot Topics in Networks, 2010.

	  [69]  D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy. Designing distributed systems using approximate synchrony in data center networks. In Proceedings of the USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI), 2015.

	  [70]  Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-fying middlebox policy enforcement using SDN. In Proceedings of SIGCOMM. ACM, 2013.

	  [71]  C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure, and M. Handley. How hard can it be? Designing and implementing a deployable Multipath TCP. In Proceedings of Networked Systems Design and Implementation, 2012.

	  [72]  S. Ratnasamy, S. Shenker, and S. McCanne. Towards an evolvable Internet architecture. In Proceedings of ACM SIGCOMM. ACM, 2005.

	  [73]  M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion routing. IEEE Journal on Selected Areas in Communications, 16(4):482–494, May 1998.

	  [74]  J. Rexford. The networking philosopher’s problem. ACM SIGCOMM Computer Communication Review, 41(3):5–10, July 2011.

	  [75]  T. Roscoe. The end of Internet architecture. In Proceedings of the 5th Workshop on Hot Topics in Networks, 2006.

	  [76]  J. D. Rosenberg and R. Shockey. The Session Initiation Protocol (SIP): A key component for Internet telephony. Computer Telephony, 8(6):124–139, June 2000.

	  [77]  J. Saltzer. On the naming and binding of network destinations. Internet Engineering Task Force Request for Comments 1498, 1993.

	  [78]  J. Saltzer, D. Reed, and D. D. Clark. End-to-end arguments in system design. ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

	  [79]  A. Singh et al. Jupiter rising: A decade of Clos topologies and centralized control in Google’s datacenter network. In Proceedings of SIGCOMM. ACM, 2015.

	  [80]  A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host mobility. In Proceedings of MOBICOM, 2000.

	  [81]  O. Spatscheck. Layers of success. IEEE Internet Computing, 17(1):3–6, 2013.

	  [82]  R. A. Steenbergen. MPLS for dummies. North American Network Operators’ Group, https://archive.nanog.org/sites/default/files/tuesday_tutorial_steenbergen_mpls_46.pdf. Accessed 30 November 2023.

	  [83]  I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection infrastructure. In Proceedings of SIGCOMM. ACM, 2002.

	  [84]  J. D. Touch and V. K. Pingali. The RNA metaprotocol. In Proceedings of the International Conference on Computer Communications and Networks. IEEE, 2008.

	  [85]  B. van Schewick. Internet Architecture and Innovation. MIT Press, 2010.

	  [86]  A. Venkataramani, J. F. Kurose, D. Raychaudhuri, K. Nagaraja, S. Banerjee, and Z. M. Mao. MobilityFirst: A mobility-centric and trustworthy Internet architecture. ACM SIGCOMM Computer Communication Review, 44(3):74–80, July 2014.

	  [87]  Y. Wang, I. Matta, F. Esposito, and J. Day. Introducing protoRINA: A prototype for programming recursive-networking policies. ACM SIGCOMM Computer Communications Review, 44(3), July 2014.

	  [88]  D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, implementation and evaluation of congestion control for Multipath TCP. In Networked Systems Design and Implementation, March/April 2011.

	  [89]  M. Yu, J. Rexford, X. Sun, S. Rao, and N. Feamster. A survey of virtual LAN usage in campus networks. IEEE Communications, 49(7):98–103, July 2011.

	  [90]  A. Zaostrovnykh, S. Pirelli, R. Iyer, M. Rizzo, L. Pedrosa, K. Argyraki, and G. Candea. Verifying software network functions with no verification expertise. In Proceedings of the Symposium on Operating Systems Principles. ACM, 2019.

	  [91]  P. Zave and E. Cheung. Compositional control of IP media. IEEE Transactions on Software Engineering, 35(1), January/February 2009.

	  [92]  P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford. Dynamic service chaining with Dysco. In Proceedings of SIGCOMM. ACM, 2017.

	  [93]  P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM Transactions on Software Engineering and Methodology, 6(1):1–30, January 1997.

	  [94]  P. Zave and J. Rexford. The design space of network mobility. In O. Bonaventure and H. Haddadi, editors, Recent Advances in Networking. ACM SIGCOMM, 2013.

	  [95]  P. Zave and J. Rexford. Compositional network mobility. In E. Cohen and A. Rybalchenko, editors, Proceedings of the 5th Working Conference on Verified Software: Theories, Tools, and Experiments, pages 68–87. Springer LNCS 8164, 2014.

	  [96]  P. Zave and J. Rexford. The compositional architecture of the Internet. Communications of the ACM, 62(3):78–87, March 2019.

	  [97]  P. Zave and J. Rexford. Patterns and interactions in network security. arXiv 1912.13371 [cs:NI], 2020.

	  [98]  P. Zave and J. Rexford. Patterns and interactions in network security. ACM Computing Surveys, 53(6):1–37, Article 118, November 2021.

	  [99]  L. Zhang, A. Afanasyev, J. Burke, and V. Jacobson. Named data networking. ACM SIGCOMM Computer Communication Review, 44(3):66–73, July 2014.

	[100]  Y. Zhu, R. Zhang-Shen, S. Rangarajan, and J. Rexford. Cabernet: Connectivity architecture for better network services. In Proceedings of the ACM Workshop on Re-Architecting the Internet. ACM, 2008.

INDEX

	4G/5G mobile network, 14, 139, 141

	layered on IP network, 122, 131, 139

	mobility, 175

	acceptor, 47

	accuracy, 24

	Address Resolution Protocol (ARP), 56, 96

	administrative authority, 38, 166

	allcast link, 159

	allcast service, 159

	allcast session, 159

	anycast service, 33, 44, 47, 63, 78, 85, 103, 155, 158

	application network

	layered on IP network, 130

	architecture, definition, 1

	AT&T packet, 8, 9, 137

	attachment, 89, 100

	Authentication Header (AH), 60

	autonomous session, 47

	availability, 74, 77

	availability service, 155

	bandwidth, 76, 77

	base Internet, 120, 153

	big-switch abstraction, 94

	blocking, 78

	Border Gateway Protocol (BGP), 60, 84, 110, 122, 124, 125

	bridging, 80

	Internet transit network, 82

	private Internet network, 87

	bridging link, 80

	broadcast link, 36, 95, 159

	broadcast service, 33, 44, 47, 63, 78, 155, 159

	broadcast session, 158, 159

	business relationship, 84

	caching, 155

	capacity, 77

	cellular radio network, 139, 141

	IP network layered on, 120

	circuit switching, 2

	classic Internet architecture, 4, 22

	cloud computing, 112, 124, 177

	compositional network architecture, 19, 22

	acronym, 216

	compound session, 86–88, 153, 161, 164, 167, 189

	congestion control, 50, 77, 212

	content-delivery network, 149, 155

	cryptographic protocol, 165

	cults, 26

	data confidentiality, 49, 78

	data integrity, 49, 78

	data-center network, 113

	tenant network layered on, 115, 122, 130

	Datagram Transport Layer Security (DTLS), 61

	destination field, 41, 50

	directory, 91, 95

	Address Resolution Protocol (ARP), 96

	Domain Name System (DNS), 101, 177

	Ethernet, 96

	for session-location mobility, 177

	distributed system, 33

	layered on IP network, 130

	domain name, 98

	Domain Name System (DNS), 60, 101, 103

	flooding attack, 183

	Dynamic Host Configuration Protocol (DHCP), 58, 60, 96

	dynamic-routing mobility, 174

	Encapsulating Security Payload (ESP), 11, 60, 138, 165

	encapsulation, 9, 13, 24, 52, 91

	encryption protocol, 165

	end-to-end principle, 3, 8, 143, 152, 208

	end-to-end signaling, 161

	endpoint authentication, 50, 185

	enterprise network, 137, 141, 201

	Ethernet network, 52

	broadcast service, 55

	flooding attack, 183

	IP network layered on, 93, 94, 120, 122, 130

	mobility service, 176

	multicast service, 55

	namespace, 53

	packet format, 52

	physical links, 52

	routing and forwarding, 54

	SCION network layered on, 130

	session protocol, 56

	experimental network

	layered on VINI network, 130

	File Transfer Protocol (FTP), 60

	firewall, 12

	firewall traversal, 157, 187

	formal model, 28, 134, 216

	forwarder, 39

	forwarding, 39, 41, 44

	forwarding protocol, 41

	forwarding rule, 40

	forwarding table, 40

	fragmentation, 42

	gateway, 80

	generality, 19, 28

	GPRS Tunneling Protocol (GTP), 140

	group, 33, 158

	group name, 35, 158

	group services, 44

	HyperText Transfer Protocol (HTTP), 60, 98, 168, 183

	implementation

	of compositional network architecture, 213

	infrastructure member, 38

	initiator, 47

	Internet access network, 82

	Internet Control Message Protocol (ICMP), 60

	Internet core network, 82

	Internet edge network, 82

	Internet evolution, 142, 143, 145

	Internet Group Management Protocol (IGMP), 60, 181

	Internet Protocol Version 4 (IPv4), 4, 145, 153

	anycast service, 63

	broadcast service, 63

	forwarding, 58

	infrastructure members, 57

	links, 57

	multicast service, 63

	namespace, 56

	packet format, 58, 62

	protocol embedding, 61

	routing, 59

	services, 62

	session protocols, 60

	sockets, 62

	user members, 57

	Internet Protocol Version 6 (IPv6), 5, 145, 153, 193

	Internet search, 155

	Internet standards, 192

	Internet transit network, 82

	Internet virtual edge network, 132

	interoperation proxy, 88, 161

	IP multicast network, 180

	layered on IP network, 122, 131

	IP network

	4G/5G mobile network layered on, 122, 131, 139, 141

	application network layered on, 130

	distributed system layered on, 130

	IP multicast network layered on, 122

	IPvN layered on, 131

	layered on cellular radio network, 120

	layered on Ethernet network, 93, 94, 120, 122, 130

	layered on MANET, 120

	layered on MPLS network, 120, 122, 124, 128, 130

	layered on PPP network, 93, 120

	layered on PSTN, 93

	layered on VLAN, 108, 120

	layered on Wi-Fi network, 120

	Mobile IP network layered on, 131

	NDN layered on, 131

	RON layered on, 106, 122, 131

	Tor layered on, 107, 131

	VPN layered on, 131, 137, 141

	WWW layered on, 97

	IPvN

	layered on IP network, 131

	layered on IPv(N-1), 147

	jitter, 76

	join table, 86, 161, 164

	keepalive service, 157

	latency, 75, 77

	layer

	general engineering definition, 4

	in classic Internet architecture, 22

	in compositional network architecture, 22

	layering, 13, 20, 89, 153, 170, 182, 208

	as optimization decomposition, 126

	for enhanced Internet services, 131

	for reachability, 120

	for routing scalability and flexibility, 122

	for security and privacy, 185

	for sharing or “slicing” resources, 130

	implementation, 194

	link, 36, 89

	link identifier, 36

	load, 77

	load balancing, 102, 168

	loss rate, 75, 77

	machine, 33

	measurement, 39

	member, 33, 34

	membership control, 39

	message, 33, 45, 89, 159, 163

	middlebox, 8, 40, 167, 169, 184, 208

	middlebox insertion, 50, 167, 169, 172

	mobile ad-hoc network (MANET), 63

	IP network layered on, 120

	Mobile IP network

	layered on IP network, 131

	Mobile IPv6, 179

	mobility service, 49, 173, 210

	dynamic-routing mobility, 174, 175

	session-location mobility, 174, 177

	modularity, 26, 197

	multi-path forwarding, 43

	multi-path service, 146, 155

	Multi-Protocol Label Switching (MPLS) network, 70

	IP network layered on, 110, 120, 122, 124, 128, 130

	layered on MPLS network, 112

	SCION network layered on, 130

	multicast link, 159

	multicast service, 33, 44, 47, 63, 78, 155, 159, 180, 197

	multicast session, 158, 159

	Multipath TCP, 155, 208

	name, 35

	Named Data Network (NDN), 66

	layered on IP network, 131

	namespace, 35, 171, 185

	net neutrality, 145, 149

	network, 33

	design, 73

	facts and assumptions, 73

	logical property, 77

	modular verification, 200, 203

	performance property, 74

	requirements and goals, 73, 74

	scope, 74

	service property, 73

	span, 74

	topological property, 74

	network address translator (NAT), 87, 169, 187, 188

	network ecosystem, 19

	network footer, 41

	network header, 41, 50, 192

	network service, 33

	Network Time Protocol (NTP), 60

	networking environment, 19

	offered load, 77

	Open Shortest Path First (OSPF), 59, 122, 124

	Open Systems Interconnection model, 4

	optimization, 118, 213

	of compositional network architecture, 213

	ordered delivery, 49, 78

	overlay field, 50

	packet, 36, 89

	packet format, 50, 192

	packet rewriting, 44

	packet switching, 2

	pattern, 26, 217

	for modular verification, 200, 203

	for routing scalability and flexibility, 122

	interoperation of heterogeneous networks, 88, 118

	mobility

	dynamic-routing mobility, 174, 175

	session-location mobility, 174, 177

	providing enhanced user services, 131, 152, 154

	needing a namespace, 171

	needing a session protocol, 167

	needing everything, 171

	needing middleboxes, 167

	needing routing, 170

	sharing or “slicing” resources, 130

	solutions to the problem of load balancing, 105, 118

	spanning multiple heterogeneous networks, 120

	payload, 46

	payload-descriptor field, 51

	performance enhancement, 50

	persistent (static) session, 47

	persistent link, 36

	physical link, 36

	piecewise signaling, 161, 164

	point-to-point link, 36, 37

	Point-to-Point Protocol (PPP) network, 93

	IP network layered on, 93, 120

	point-to-point service, 33

	point-to-point session, 37, 47

	power-limited device, 154

	precision, 19, 24

	privacy, 156, 168, 182

	private IP namespace, 87

	private IP network, 87

	protocol embedding, 50, 153, 161–164, 171, 192

	proxy, 86–88, 161, 167, 189

	public Internet, 145, 149

	public key cryptography, 185

	Public Switched Telephone Network (PSTN), 2, 154

	interoperation with voice-over-IP, 88

	IP network layered on, 93

	QUIC, 100, 178, 188

	reachability, 78, 200, 205

	real Internet architecture, 119

	reliable delivery, 49, 78, 210

	replica, 159

	Resilient Overlay Network (RON), 68, 106, 155, 172

	layered on IP network, 106, 122, 131

	round-trip time, 75

	routing, 11, 14, 20, 39, 42, 170, 212

	anycast, 44

	bandwidth efficiency, 126

	Border Gateway Protocol, 84

	data center, 114

	Ethernet, 54

	for middlebox insertion, 40, 169

	Internet, 59, 84, 170

	mobile ad-hoc network, 64

	multi-path, 43, 172

	Multi-Protocol Label Switching network, 110

	multicast, 44

	Named Data Network, 67

	Open Shortest Path First, 59

	randomized, 173

	Resilient Overlay Network, 69, 106

	session affinity, 173

	special-purpose, 172

	routing protocol, 40

	routing scalability, 122, 170

	in Internet access network, 124

	in Internet core network, 124

	SCION network, 146

	layered on Ethernet, 130

	layered on MPLS network, 130

	SEATTLE network, 176

	mobility, 176

	overlay layered on underlay, 122

	security, 39, 156, 182, 196, 208

	flooding attack, 183

	policy violation, 183

	subversion attack, 183

	service-level agreement (SLA), 74

	session, 45, 89, 157, 192

	session affinity, 40, 47, 158, 170, 204

	session endpoint, 47, 157

	session footer, 46

	session header, 46, 50

	session identification, 46, 157, 192

	Session Initiation Protocol (SIP), 47

	signaling network, 190

	session property, 158

	session protocol, 45, 167, 171

	session services, 49

	session setup, 47

	session state, 47, 157

	session teardown, 48

	session view, 38

	session-identifier field, 46, 50, 157, 164

	session-location mobility, 174

	session-protocol field, 50

	shared link, 134

	Simple Mail Transfer Protocol (SMTP), 60

	simple session, 86, 164

	source field, 41, 50

	stateful firewall, 48, 156, 187

	subduction, 16, 133, 181

	4G/5G mobile network over base Internet, 139, 141

	implementation, 194

	VPN over base Internet, 137, 141

	subsession, 163, 164, 208

	SYN flood attack, 156

	synchronization, 50

	teaching networking, 6, 215

	tenant network, 112

	layered on data-center network, 115, 122, 130

	terminology, 4, 7, 25

	throughput, 77

	topology

	fat tree, 114

	fully connected, 37, 94

	hub and spoke, 37, 94

	redundant, 37

	ring, 37

	spanning tree, 55

	tree, 37

	topology view, 38

	Tor, 171, 173, 186

	Tor network, 107

	layered on IP network, 107, 131

	traffic filtering, 43, 156, 182

	transient (dynamic) session, 47

	transient link, 36

	Transmission Control Protocol (TCP), 60, 163, 165, 188, 208, 210

	flooding attack, 183

	Transport Layer Security (TLS), 60, 100

	tunnel, 8

	tussle, 18

	tussle principles, 144, 154, 185, 208

	unique name, 35

	User Datagram Protocol (UDP), 60, 160, 166

	user interface to a network, 21, 33

	user member, 38, 77, 78

	verification, 77, 196

	vestigial, 28, 35

	virtual edge network, 132, 170

	Virtual eXtensible Local Area Network (VXLAN) session protocol, 115, 117

	virtual island network, 136, 170, 180

	virtual link, 36, 171, 200

	virtual local area network (VLAN), 108, 122

	IP network layered on, 108, 120

	virtual machine (VM), 113

	VIrtual Network Infrastructure (VINI) network, 130

	experimental network layered on, 130

	virtual private network (VPN), 11, 137, 141, 202

	layered on IP network, 131, 137, 141

	WWW network layered on, 137, 141

	Wi-Fi network, 93

	IP network layered on, 120

	World-Wide Web (WWW), 97

	cache, 155, 168

	flooding attack, 183

	layered on IP network, 97

	layered on VPN, 137, 141

	ZebraNet, 65

	zoo of network designs, 20, 63

	4G/5G mobile network, 14, 139

	cellular radio network, 139

	data-center network, 113

	enterprise network, 137

	Ethernet, 52

	Internet access network, 83, 84

	Internet core network, 82, 84

	Internet edge network, 82

	Internet Protocol Version 4, 56

	Internet Protocol Version 6, 193

	Internet transit network, 82

	Internet virtual edge network, 132

	Internet virtual island network, 136

	IP multicast network, 180

	mobile ad-hoc network, 63

	Multi-Protocol Label Switching, 70

	Named Data Network, 66

	Point-to-Point Protocol, 93

	Public Switched Telephone Network, 2

	Resilient Overlay Network, 68

	SCION network, 146

	SEATTLE network, 176

	Session Initiation Protocol (SIP) signaling network, 190

	tenant network, 112

	Tor, 107

	VIrtual Network Infrastructure network, 130

	virtual private network, 137

	Wi-Fi, 93

	World-Wide Web, 97

	ZebraNet, 65

OEBPS/images/fig5-6.png
enterprise network

. ! 7’
intrusien
detector

balancer

OEBPS/images/fig5-7.png
overlay
network

bridged
P

networks

user
machine

user
machine

initiator
A

acceptor
D

“chooses b,
sets up
virtual link

chooses ¢,
sets up
virtual link

src=b,dst=c

src=¢ dst=d

OEBPS/images/fig5-8.png
Pe

OEBPS/images/fig5-9.png

OEBPS/images/fig6-1.png
network

message of P

header
s § N\
session
header
/ A \
desti- i other . .
source X session session payload oth.e ' session network
name nation protocol network it || el session payload footer footer
name P fields escriptor fields
overl.ay or overlay data or
next protocol Q message of Q
Y

OEBPS/images/fig6-10.png
inLink

to OS

inLink

Overlay .| Overlay .| Overlay
Acquire Forward " Transmit
| /
Underlay Underlay| , from OS
Receive Send

A
Underlay Underlay |Underlay
Acquire ”| Forward " Transmit

outLink

outLink

inLink

Overlay .| Overlay Overlay
Acquire Forward Transmit
Underlay Underlay
Receive Send

A
Underlay Underlay Underlay| |
Acquire ”| Forward Transmit

—>
outLink

OEBPS/images/fig6-2.png
src=A dst=B

4 b
i 23 :
’QA/ > B
- < transmitTable
transmitTable : B “ (3,M2B) :
(1A2M) i kTransmit linkAcquire -~ " linkTransmit linkAcquire

* (1, packet) (2, packet) .- . (3, packet) (4, packet) -

linkldent= packet =

A4 2 payload - =
sessionldent=payload = A * linkldent= packet=
A2M acket - ayload
- L : sessionldent=payload = 4 Ap 4
M2B packet -
sessionReceive",‘ - sessionSend
* sessionSend (A2M,payload) " (M2B, payload) .
: (A2M, payload) receiveTable - " sendTable sessionReceive :
: N 'M2B,payload) :
sendTable (A2M, 2) o (M26,(m, b)) (M2B,payload) : -
(A2M, (a,m)) : src=a, dst=m, ident=A2M src=m, dst =b, ident = M2B ; recelvelavie

(M2B, 4)

OEBPS/images/fig6-3.png
private multicast network

customer
machine

global service network, layered on base Internet

OEBPS/images/fig6-4.png
customer machines

customer
networks

service
machine

customer machines

service network

packet is handled as if
received on k.

fragment of base Internet

prevented by
Isolation Property
preveﬁfed by
Enclosure Property

OEBPS/images/fig6-5.png
TCP session between E and D

7 N
employee filterand personnel

laptop virus scanner database

OEBPS/toc.xhtml

Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication

		Contents

		Preface

		1. Introduction

		1.1. What and for whom

		1.2. A brief conventional history of the Internet

		1.2.1. Fundamental concepts

		1.2.2. The classic Internet architecture

		1.2.3. Success and ossification

		1.2.4. Teaching about networking

		1.2.5. Networking research

		1.3. An alternative view of the Internet

		1.3.1. Past evolution

		1.3.2. The current Internet

		1.3.2.1. End-to-end communication

		1.3.2.2. Assembling networks with bridging

		1.3.2.3. More security

		1.3.2.4. Assembling networks with layering

		1.3.2.5. More layering

		1.3.2.6. Assembling networks with subduction

		1.3.2.7. Summary of the example

		1.3.3. Future evolution

		1.4. Purposes and a new approach

		1.5. A new model of network architecture

		1.5.1. Fundamental concepts

		1.5.2. Brief comparison to the classic Internet architecture

		1.5.3. Characteristics of the model

		1.5.3.1. More on accuracy and precision

		1.5.3.2. On terminology

		1.5.3.3. Modularity, repetition, and patterns

		1.5.3.4. More on generality and formality

		1.6. Organization of the book

		1.7. Bon voyage

		2. Describing Networks and Services

		2.1. Introduction

		2.2. Basic concepts

		2.2.1. Network services

		2.2.2. Components of a network

		2.2.2.1. Members

		2.2.2.2. Names

		2.2.2.3. Links

		2.2.2.4. Network topology

		2.2.2.5. Network views

		2.2.3. Authority and management

		2.2.4. Routing and forwarding

		2.2.4.1. Routing

		2.2.4.2. Forwarding

		2.2.4.3. Implementing anycast, broadcast, and multicast

		2.2.5. Sessions and session protocols

		2.2.5.1. Session basics

		2.2.5.2. Session endpoints and session state

		2.2.5.3. Session services

		2.2.5.4. Header formats and protocol embedding

		2.3. Example: Ethernets

		2.3.1. Physical links

		2.3.2. Ethernet members and names

		2.3.3. Ethernet routing and forwarding

		2.3.4. Ethernet services

		2.4. Example: Internet Protocol networks

		2.4.1. Hierarchical namespace

		2.4.2. IP members and links

		2.4.3. IP forwarding

		2.4.4. IP routing

		2.4.5. IP session protocols

		2.4.6. IP services

		2.5. Other network designs

		2.5.1. Mobile ad-hoc networks

		2.5.2. Named Data Networks

		2.5.3. Resilient Overlay Networks

		2.5.4. Multi-Protocol Label Switching networks

		2.6. Properties of networks and services

		2.6.1. Topological properties

		2.6.2. Performance properties

		2.6.2.1. Requirements and goals

		2.6.2.2. Facts and assumptions

		2.6.3. Logical properties

		2.6.3.1. Requirements

		2.6.3.2. Facts and assumptions

		2.7. Conclusion

		3. Composing Networks and Services

		3.1. Introduction

		3.2. Bridging

		3.2.1. Definition of bridging

		3.2.2. Example: Bridging networks in the Internet

		3.2.2.1. The physical hierarchy

		3.2.2.2. The business hierarchy

		3.2.2.3. Routing among bridged networks of the Internet

		3.2.3. Compound sessions

		3.2.4. Example: Bridging private networks with the public Internet

		3.2.4.1. The problem of private IP networks

		3.2.4.2. A solution to the problem of private IP networks

		3.2.5. Example: Interoperation of heterogeneous networks

		3.3. Layering

		3.3.1. Definition of layering

		3.3.2. Details of layering

		3.3.3. Example: Implementation of IP links between forwarders

		3.3.4. Example: Ethernets as IP underlays

		3.3.4.1. The IP edge network

		3.3.4.2. Implementing IP links

		3.3.4.3. IP-over-Ethernet control protocols

		3.3.5. Example: Layering the World-Wide Web on the Internet

		3.3.5.1. Members and names in the Web

		3.3.5.2. Sessions in the Web

		3.3.5.3. Links in the Web

		3.3.5.4. The Domain Name System

		3.3.5.5. Solutions to the problem of load balancing

		3.4. Other examples of layering

		3.4.1. Resilient Overlay Networks

		3.4.2. Tor

		3.4.3. Virtual local area networks

		3.4.4. Layered Multi-Protocol Label Switching networks

		3.4.5. Cloud computing

		3.4.5.1. Tenant networks

		3.4.5.2. Data-center networks

		3.4.5.3. Layering tenant networks on a data-center network: Topology and data structures

		3.4.5.4. Layering tenant networks on a data-center network: Implementation of dynamic virtual links

		3.5. Conclusion

		4. The Real Internet Architecture

		4.1. Introduction

		4.2. Layering for reachability

		4.2.1. The base Internet

		4.2.2. Virtual local area networks

		4.3. Layering for routing scalability and flexibility

		4.3.1. How layering decomposes the routing problem

		4.3.2. Example: Inter-network versus intra-network routing in the Internet

		4.3.3. A quantitative view of layered routing

		4.3.3.1. “Layering as optimization decomposition

		4.3.3.2. Layered NUM problems

		4.4. Layering for resource sharing or “slicing

		4.5. Layering for enhanced Internet services

		4.5.1. Virtual edge networks

		4.5.2. Subduction

		4.5.2.1. A first example of subduction

		4.5.2.2. More examples of subduction

		4.5.3. Example: Provenance of the AT&T packet

		4.5.3.1. Part 1: Application and enterprise networks

		4.5.3.2. Part 2: 4G or 5G mobile network and its underlays

		4.5.3.3. Putting the two parts together

		4.6. Present and future evolution

		4.7. Principles of Internet design

		4.7.1. The original end-to-end principle

		4.7.2. The new end-to-end principle

		4.7.3. The “tussle” principles

		4.8. Evolution of the base Internet

		4.8.1. Replacing IPv4 and IPv6

		4.8.1.1. SCION

		4.8.1.2. Sharing resources among old and new networks

		4.8.1.3. Creating end-to-end paths of new networks

		4.8.2. Private IP transit networks

		4.9. Conclusion

		5. Patterns for Enhanced Network Services

		5.1. Introduction

		5.2. Minimal definition of the base Internet

		5.3. Obstacles and enhanced services

		5.3.1. Endpoint limitations

		5.3.2. Network limitations

		5.3.3. Insufficient security or privacy

		5.3.4. Side-effects of beneficial network features

		5.4. Session architecture

		5.4.1. Session review

		5.4.2. Broadcast and multicast sessions

		5.4.2.1. Group communication

		5.4.2.2. Allcast (broadcast or multicast) sessions

		5.4.3. Compound sessions

		5.4.4. Protocol embedding

		5.4.4.1. An operational description of embedding

		5.4.4.2. Subsessions

		5.4.4.3. Protocol embedding and compound sessions

		5.4.4.4. Constraints on embeddings

		5.5. Comparison of mechanisms for adding services

		5.5.1. Services requiring a session protocol

		5.5.2. Services requiring middleboxes

		5.5.2.1. Middleboxes inserted with compound sessions

		5.5.2.2. Middleboxes inserted by routing and forwarding

		5.5.3. Services requiring routing and forwarding

		5.5.4. Services requiring layering

		5.5.4.1. Who can add a layer?

		5.5.4.2. Services requiring a namespace

		5.5.4.3. Having it all

		5.6. Example: Mobility

		5.6.1. Definitions of mobility patterns

		5.6.2. Uses of dynamic-routing mobility

		5.6.3. Uses of session-location mobility

		5.6.3.1. Session-location mobility for the World-Wide Web

		5.6.3.2. Interoperation

		5.7. Example: Inter-network multicast

		5.8. Example: Security and privacy

		5.8.1. Traffic filtering for security

		5.8.1.1. Network-specific attacks

		5.8.1.2. Network-specific traffic filtering

		5.8.2. Layering for security and privacy

		5.9. Example: Firewall traversal

		5.9.1. The problem with firewalls

		5.9.2. Helping sessions survive

		5.9.3. Externally initiated sessions

		5.10. Conclusion

		6. Ideas for a Better Internet

		6.1. Introduction

		6.2. Internet standards

		6.2.1. Session architecture

		6.2.2. Layering and subduction

		6.2.2.1. Algorithms and data

		6.2.2.2. Varied implementations of the standard

		6.3. Verification and security

		6.3.1. Example: Global private multicast

		6.3.1.1. Multicast properties

		6.3.1.2. Security properties

		6.3.1.3. Link performance properties

		6.3.1.4. Modular verification of the properties

		6.3.2. Example: Secure enterprise network

		6.3.2.1. Security properties

		6.3.2.2. Modular verification of the properties

		6.3.3. Example: Flow-affinity overlay

		6.3.4. A research agenda for modular verification and security

		6.4. Principles of network architecture

		6.4.1. Middleboxes

		6.4.2. Reliable delivery and mobility

		6.4.3. Routing and congestion control

		6.5. Implementation and optimization

		6.5.1. A research agenda for modular implementation and optimization

		6.5.2. Example: Optimization of a programmable pipeline

		6.6. Thoughts on teaching networking

		6.7. Conclusion

		Glossary

		Bibliography

		Index

List of Figures

		FIGURE 1.1. The user interface to a network, in the classic Internet architecture. The placement of the user interface reflects the view that user machines assume very little about the network, and the network assumes very little about the user machines. Throughout this book, red is used to point out the most important parts of figures.

		FIGURE 1.2. Layers in the classic Internet architecture on the left, with examples of corresponding packet headers on the right. Headers lower in the diagram come earlier in the actual packet.

		FIGURE 1.3. A sample from the Internet protocol suite.

		FIGURE 1.4. Headers of a typical packet in the AT&T backbone network of 2013, illustrating evolution of the Internet architecture.

		FIGURE 1.5. There is a protocol stack in each of two user machines connected by the Internet. Not shown: (i) protocols below IP, e.g., the Ethernet protocol; (ii) links and forwarders in the path between the user machines.

		FIGURE 1.6. Bridged IP networks in the Internet. In the enterprise network, there is an intrusion-detection middlebox for security.

		FIGURE 1.7. Encryption provides further security.

		FIGURE 1.8. A virtual private network is layered on bridged IP networks. HTTP modules and gateways between the machines are still present but no longer shown.

		FIGURE 1.9. The virtual private network is layered on a 4G mobile network. The 4G network is layered on IP networks and radio networks. Note that the virtual link R is implemented by the radio network, which is not shown.

		FIGURE 1.10. Subduction assembles networks by means of shared links.

		FIGURE 1.11. The user interface to a network in compositional network architecture.

		FIGURE 1.12. Correspondence of layers in the two architectures. Similar functions have similar vertical placements.

		FIGURE 1.13. In compositional network architecture, machines hosting middleboxes can play different roles in different networks.

		FIGURE 2.1. The user interface to a network.

		FIGURE 2.2. Common network topologies using point-to-point links. In each network, a longest packet path is shown in red.

		FIGURE 2.3. Information transmitted by routing protocols, in both distributed and centralized routing. The centralized controller is in red, while all other network members are forwarders.

		FIGURE 2.4. Fragmentation of a message.

		FIGURE 2.5. Forwarding tables to reach anycast group A and multicast group M. The incoming-link and destination columns of the tables are the pattern to be matched, and the outgoing-links column is the action. “*” is a pattern that matches any incoming link.

		FIGURE 2.6. A view of a simple session. Session identification identifies the session uniquely. It may consist solely of a session-identifier field in network headers, or may include this field plus other header fields such as source and destination.

		FIGURE 2.7. Three ways to set up an autonomous, point-to-point, two-way session. The red arc on the lower right indicates replication, i.e., when the sender sends one message, it is replicated and delivered to a broadcast or multicast group.

		FIGURE 2.8. The most general format, for a packet containing whole messages (no fragmentation). The shaded area is a message. Both network header and session header can have other fields specific to the design of the network or protocol.

		FIGURE 2.9. Ethernet packet format. Field lengths are shown in bytes.

		FIGURE 2.10. Routing and forwarding in an Ethernet (only links of the spanning tree are shown). Red arrows show replication and forwarding of a packet with source name A and destination name B when both have just joined the network and are unknown to forwarders. At each forwarder the table entry for A, after it has seen the packet, is shown.

		FIGURE 2.11. Hierarchical decomposition of some IP name blocks, written in dotted-decimal notation. Every IP name in the figure begins with the same two decimal numbers, e.g., 200.45.

		FIGURE 2.12. Fields of an IPv4 network header, arranged in 32-bit words. Unless otherwise noted, field lengths are in bytes.

		FIGURE 2.13. Complex protocol embeddings in IP packet headers. Note that both these packets are carrying approximately the same thing, which is encrypted HTTP payloads.

		FIGURE 2.14. Routing of messages in ZebraNet.

		FIGURE 2.15. A session in a Named Data Network.

		FIGURE 2.16. A Resilient Overlay Network, marked with alternative routes between a and c.

		FIGURE 2.17. An MPLS network. Sessions are named with red script capital letters. Their paths are drawn in red, with red labels on each hop. Physical links are drawn in black, and some are named with black capital letters.

		FIGURE 3.1. A session view of bridged networks.

		FIGURE 3.2. The networks of the Internet, and their bridging relationships.

		FIGURE 3.3. IP anycast sends client requests to the closest server in the group.

		FIGURE 3.4. A compound session between A and C. The compound session is made of two simple sessions, joined at a proxy.

		FIGURE 3.5. A network address translator (NAT) enables a private member to reach a destination in the public Internet.

		FIGURE 3.6. An interoperation proxy enables a voice-over-IP device to reach a telephone in the PSTN.

		FIGURE 3.7. In layering, a link in an overlay network is implemented by a session in an underlay network.

		FIGURE 3.8. Links in IP networks and their implementing sessions. Warning: This figure is distorted in that the machines look big and the networks look small, which is the opposite of their true physical sizes!

		FIGURE 3.9. The Internet enables machines on different Ethernets to communicate.

		FIGURE 3.10. Messages of the Dynamic Host Configuration Protocol.

		FIGURE 3.11. An HTTP session in the Web, a virtual link in the Web, and a TCP session in the Internet are all in one-to-one correspondence.

		FIGURE 3.12. IP members responding to a DNS request for which there are no cached results. Numbers indicate the order in which messages are sent.

		FIGURE 3.13. A “Level 4” load balancer is an IP proxy. It directs each implementing session to a particular server by changing packet destinations to the server’s unique name. Contrary to the usual convention, arrows represent directional flow of packets in a TCP session.

		FIGURE 3.14. A “Level 7” load balancer is a Web proxy. It discovers which shard of the Web content the client is requesting, and forms a compound session to the server that is storing the particular shard.

		FIGURE 3.15. The Tor network layered on the Internet. Members have the same names in both layers.

		FIGURE 3.16. A campus network with separate VLANs for students and administrators. IP names and MAC names with the same final digit name network members on the same machine. In the IP network, only the suffixes of IP names are shown.

		FIGURE 3.17. An MPLS network. Sessions are referred to with red script capital letters, and their paths are drawn in red. Physical links are drawn in black.

		FIGURE 3.18. The topology of a typical data-center network, which is a fat tree connecting the top-of-rack forwarders. This network is also known as a “data-center fabric.”

		FIGURE 3.19. Layering of a tenant Ethernet on an IP data-center network. Table entries in red are filled in the first time W communicates with X.

		FIGURE 3.20. An IP packet header in which the VXLAN session protocol is embedded in UDP.

		FIGURE 4.1. Organization of the base Internet, with the path of a session through a chain of bridged networks.

		FIGURE 4.2. Introducing layering at the outer edge of a network.

		FIGURE 4.3. An IP transit network of the base Internet (black) layered on an MPLS network (red, “after” view only).

		FIGURE 4.4. One NUM problem layered on another.

		FIGURE 4.5. A virtual edge network, layered on the base Internet.

		FIGURE 4.6. Subduction occurs when one tectonic plate slides over the edge of another (U.S. Geological Survey).

		FIGURE 4.7. A session between an edge network of the base Internet and a tenant network, illustrating subduction.

		FIGURE 4.8. A session between a virtual edge network and the base Internet, also illustrating subduction.

		FIGURE 4.9. A virtual island network. Links joined by dotted lines are shared. The red arrow shows the path of a packet among members of both networks.

		FIGURE 4.10. Headers of a typical packet in the AT&T backbone network.

		FIGURE 4.11. An enterprise edge network bridged with a VPN and transit networks of the base Internet. Dotted red lines show which link is being implemented by which session.

		FIGURE 4.12. How a cellular provider uses the Internet. Dotted red lines show which link is being implemented by which session.

		FIGURE 4.13. How the two parts of the example fit together. Note that the radio network and edge network are at the same level logically, although they are not drawn at the same level for lack of space.

		FIGURE 4.14. The path of the packet in Figure 4.10 through the base Internet. The red bar corresponds to the red line in Figure 4.13.

		FIGURE 4.15. Evolution from IPv(N-1) to IPvN. Virtual IPvN links span gaps in the physical coverage of IPvN.

		FIGURE 4.16. Public and private paths between a client in an Internet edge network and a server in hyperscaler’s data center.

		FIGURE 5.1. Levels of abstraction in the Internet ecosystem. At each level, there is a large collection of functions (black), and a purpose within the context of networking (red).

		FIGURE 5.2. Allcast sessions implementing group A on the left, and corresponding allcast links on the right. On the right, d3, d6, and d7 are link identifiers local to their members.

		FIGURE 5.3. Workflow within endpoints for a session with protocol embedding. IX is a session identifier for a session of protocol X. MX is a message of protocol X, taking the form (S[IX, payloadDescriptor], payload). S[] denotes the session header, which may have other fields as well. A packet with outer protocol X takes the form (N[X], MX). N[] denotes the network header, which has a session-protocol field and other fields as well.

		FIGURE 5.4. Three ways to combine protocol embedding with a compound session. In this figure, a single session is represented with three dashed arrows, each labeled with information from the packets’ network header or one of its session headers.

		FIGURE 5.5. Two ways to insert a middlebox in the path of a session.

		FIGURE 5.6. An enterprise network that steers packets through middleboxes. The intrusion detector drops suspicious packets. The smartphone formatter reformats Web pages for better display on a smartphone.

		FIGURE 5.7. Middlebox insertion in an overlay network.

		FIGURE 5.8. Physical mobility, before and after.

		FIGURE 5.9. Dynamic-routing mobility, before and after.

		FIGURE 5.10. Session-location mobility, before and after.

		FIGURE 5.11. Topology of a SEATTLE overlay network. The route to A from every forwarder is F, and the route to B from every forwarder is G.

		FIGURE 5.12. Interoperation in Mobile IPv6. HA is the name of the home agent for the mobile machine whose identifier is Mident. On the left side, user U is stationary. On the right side, U is also mobile, and the session has been optimized so that packets do not pass through home agents.

		FIGURE 5.13. The path of an IP multicast packet from a sender to a receiver in group G.

		FIGURE 5.14. Relationships among entities used to identify a member of a network.

		FIGURE 5.15. Some details of a secure overlay network, showing how middleboxes can do full packet inspection despite encryption, and how virtual links conceal the end-to-end paths of packets.

		FIGURE 5.16. Creating a session through a rendezvous proxy.

		FIGURE 6.1. The most general format for a packet containing whole messages (no fragmentation). The shaded area is a message of protocol P. Both network header and session header can have other fields specific to the design of the network or protocol.

		FIGURE 6.2. The layering interface between composed networks. All arrows indicate the flow direction of a message from A to B in an overlay session.

		FIGURE 6.3. A private multicast network, implemented as an overlay on a shared global service network. The one-way links in the multicast network form a multicast tree. In the service network, members on service machines implement virtual links in the customer networks (one session implementing a virtual link is shown). The service network is an overlay on the base Internet.

		FIGURE 6.4. Two security attacks on the service network.

		FIGURE 6.5. A session in an enterprise edge network with security.

		FIGURE 6.6. The enterprise network augmented with a VPN.

		FIGURE 6.7. An access network with security filtering.

		FIGURE 6.8. An access network with security filtering with flow affinity. To allow a linear drawing of the access network, gateways 1 and 2 and forwarder Y all appear twice.

		FIGURE 6.9. Illustration of a constraint on where reliable delivery and mobility are placed in a layering hierarchy.

		FIGURE 6.10. A prototype implementation of compositional network architecture. Both diagrams show the hardware pipeline stages on the middle machine of Figure 6.2. In each diagram, the path of red arrows is the path traversed by the packets described in Figure 6.2. Optimization converts the eight-stage pipeline on the left to four stages on the right.

List of Tables

		TABLE 2.1. A selection of IP session protocols.

		TABLE 2.2. Comparison of network characteristics.

		TABLE 2.3. Comparison of network terminology. Note that in MANETs, RONs, and MPLS networks, all members act as forwarders. An omitted entry means either that terminology differs among instances of the type, or that no term is used for this concept.

		TABLE 2.4. A service-level agreement for availability, measured over a calendar month.

		TABLE 3.1. The number of virtual machines in a data center, approximate range

		TABLE 4.1. The architectural purposes of layering: Layering for reachability.

		TABLE 4.2. The architectural purposes of layering: Layering for routing scalability and flexibility. Entries marked with an asterisk are covered later in the book.

		TABLE 4.3. The architectural purposes of layering: Layering for resource sharing. Entries marked with an asterisk are covered later in the book.

		TABLE 4.4. The architectural purposes of layering and subduction: Layering and subduction for enhanced Internet services. Entries marked with an asterisk are covered later in the book.

		TABLE 6.1. Properties for global private multicast.

		TABLE 6.2. Security properties of the virtual private network (VPN) and enterprise edge network (EEN).

Guide

		Cover Page

		Title Page

		Copyright Page

		Dedication

		Contents

		Preface

		Start of Content

		Glossary

		Bibliography

		Index

Pagebreaks of the print version

		cover

		i

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		xi

		xiii

		xiv

		xv

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		219

		220

		221

		222

		223

		224

		225

		226

		227

		229

		230

		231

		232

		233

		235

		236

		237

		238

		239

OEBPS/images/fig5-11.png
fully-
connected

user
members

user
members

OEBPS/images/fig5-12.png
Mobile IPv6 overlay network

src=U,

Mobile IPv6 overlay network

dst=Mident,
7

bridged IP networks

________ sre=U, _ _ ______
- dst = Mident s
src="Ulog,

bridged IP networks

OEBPS/images/fig5-13.png
multicast
network

\warder/

links of multicast tree

* multicast packet
v withdst=G
\

bridged
P
networks

<

OEBPS/images/fig5-14.png
network member,
session endpoint

is the has access to
user of this (checked by endpoint
session authentication)
endpoint

real-world
identity

public/private
key pair

owns
(certified by
certificate authority)

OEBPS/images/fig5-15.png
overlay
network

bridged
P

networks

src=A, dst=D
acceptor
D

middlebox

B secure
cleartext link

initiator
A

encrypted

@ implementation
src=q,dst=b src=b, dst=c src=c dst=d

OEBPS/images/fig5-16.png
edge network

persistent session

post-rendezvous session

rendezvous

proxy

join table

edge network

initiating session

OEBPS/images/fig5-2.png
(D=

src=S51,dst=A, ident=D1

OEBPS/images/fig5-3.png
overlay network
or distributed

user user
system module module
over K .
send | b datato P receively, data
y
inner p inner p
protocol protocol
send M, = A receive Mp =
S[1p, over], datq S[lp,over],data
Y
toQ
outer outer
protocol Q protocol Q
send M = A recefve M=
S[lq. Pl (S[lp Yover], data) v S[14. Pl (S[1p, over], data)
to netwark
network network
functions functions

send

N[Q], (S[lg,P], (S[lp,over], data))

receive

OEBPS/images/9780691261850.jpg
THE REAL
INTERNET
ARCHITECTURE

TR

PAMELA ZAVE
JENNIFER REXFORD

OEBPS/images/fig5-4.png
X simple session with protocol embedding

compound session
with protocol embedding
(Case 1) A

proto = Q, ident =x

proto =P, ident=i

src=a,dst=c

proto=F,

compound session
with protocol embedding
(Case 2)

compound session
with protocol embedding
(Case 3) A

proto=Q,

proto=Q,
ident = x

proto=PF,

OEBPS/images/fig5-5.png
session with a middlebox

inserted by routing and forwarding

session with a middlebox

inserted with a compound session

src=a,dst=c,
proto=PF,
ident =i

with routing through b

b

src=a,dst=c,
proto=F,
ident=i

src=a,dst=b,
proto=PF,
ident =i

src=b,dst=c¢,
proto=F,
ident=j

OEBPS/images/fig1-2.png
application layer

payload

HTTP

| transport layer \

TCP

| network layer I\

P

Ethernet

| link layer }/
physical layer

OEBPS/images/fig2-14.png
gregarious

base
station

send data to

nearby base

data transmission station
by walking

send data to
nearby zebras

OEBPS/images/fig1-13.png
service-
oriented
overlay
network

layering
interface

machine machine

machine
session
. RN
user user
member meer
A
receive(message)
implemen-
tation of : .
link deliver(message)
il ~
bridged autonomous A 4 session
IP networks of the
Internet

forwarders

OEBPS/images/fig2-15.png
destination = demo/1/3, sessionldent = ident data

data
source

 pending interest
tables

| demo/1/3 | ident | y| | demo./1/3 | ident | z |

demo/1/3

OEBPS/images/fig1-4.png
payload

HTTP
TCP
P
ESP
P
GTP
ubpP
P
MPLS
MPLS
Ethernet

enterprise network

4G mobile
IP network

Lo IP transit network

.. .Multi-Protocol Label
Switching network

"*+-another MPLS network

"*. Ethernet network

OEBPS/images/fig2-16.png

OEBPS/images/fig1-3.png
NTP DNS BGP FTP HTTP application layer

uDP TCP transport layer

IPv4 network layer

PPP Ethernet Wi-Fi link layer

OEBPS/images/fig2-17.png
v
6 Chicago

San <€—

Francisco Denver

Albuquerque /’V\llzgrrtth

foc}

San
————— Houston
Antonio

7

OEBPS/images/fig1-10.png
employee VPN intrusion Web
cellplhone virtual private network server detector se;\:er
L i ettt
P

data-center

cell tower | -
machine 4G

other bridged
IP networks

shared
Slink

enterprise IP network

OEBPS/images/fig2-2.png
NS
</

fully connected ring tree

".iﬁub

hub and spoke irreqular, redundant

OEBPS/images/fig1-1.png
user
interface

user
interface

OEBPS/images/fig2-3.png
info

gl

.

info

DISTRIBUTED ROUTING

vv\

»
Pie Ss info

~
~

CENTRALIZED ROUTING

info' N

info
Iy rules

rules

1
.t grules
info !

OEBPS/images/fig1-12.png
layers in
compositional network architecture

Al
layers in the /corresponding to the corresponding to \
classic Internet architecture classic Internet architecture Figure 1.4
application layer I application network
| virtual private IP network |
| 4G mobile IP network |
| transport layer |
IP network IP network
| network layer |
| MPLS network |
| MPLS network |
| link layer |
physical network Ethernet network
physical layer

OEBPS/images/fig2-4.png
message

session header
for protocol P

payload

session footer
for protocol P

fragment 1 fragment 2 fragment 3
network network network network network network
header fragment 1 footer header fragment 2 footer header fragment 3 footer

pa'ckéis

OEBPS/images/fig1-11.png
user
interface

user machine

module of
distributed system

send(message)

user machine

module of
distributed system

receive(message)

deliver(message)

NETWORK

OEBPS/images/fig2-5.png
destination

forwarding table incoming link outgoing links

OEBPS/images/fig2-6.png
machine machine

(sessi /;emiﬁ i module of module of . rlzceiv; .
sessionldentification, distributed system distributed system (sessionldentification,
message) message)
NETWORK .
deliver
B T il et o uladatatals (sessionldentification,
ident = sessionldentifier message)

member) ... member

OEBPS/images/fig2-7.png
setup: src = init, dst = acpt
A

>

<
<

accept: src = acpt, dst = init

setup: src =init,
dst = broad

setup: src = init,

dst =any

bro

accept: accept:
SIC=any or uniq, src = broad or uniq, broad,
dst = init dst = init uniq

OEBPS/images/fig6-6.png
employee

virtual private network

enterprise machines

.* personnel
database

laptop
TCP session between E and D
P e e SR
@ server
VPN secure link
client
coffee-shop enterprise
machine machine

IPsec session between Xand S...

NAT/
forwarder

and between Nand S |:

filter and
virus scanner

edge network in a coffee shop

IP transit networks

enterprise edge network

OEBPS/images/fig6-7.png
flow B

gateway)—fforwarder
1 X

flow A

OEBPS/images/fig6-8.png
flow B
ﬁltler\ (filter flow-affinity network

implementation

// . \\ Internet access network

OEBPS/images/fig6-9.png
application network
TCP session
STTTTTTTTTT T ST TTTTTTTTTTTTTTTTTT N
L dynamic-routing mobility 5 !
: —~ U, !
M B
\/

radio session

base Internet

radio network

OEBPS/images/pg128.png
Z U(x;) — cost(x;)

i

OEBPS/images/fig1-5.png
user user
machine machine

OEBPS/images/fig1-6.png
other bridged autonomous IP networks

enterprise IP network

user
machine

gateway

gateway intrusion Web
detector server

bridging link

OEBPS/images/fig1-7.png
other bridged autonomous IP networks enterprise IP network

employee gateway gateway VPN intrusion Web
machine server detector server

OEBPS/images/fig1-8.png
employee VPN intrusion Web

machine . . server
virtual private network detector se:\ler

src=E dst=W

implemented virtual link

src=M,dst=5

implementing session

other bridged IP networks enterprise IP network

OEBPS/images/fig1-9.png
employee

VPN intrusion
cellplhone virtual private network server detector
TCP |\ mmmmmm e e e
P
data-center \
cell tower . '
\
src=M, \
dst=S \
ESP |-\ ----F-------\----= |
M p \
\
IP ” \
\
\
\
: \
. imple-
s menting AN
implemented session /| GTP, P Esp
virtual links o UDP s
H e] (]
other bridged IP networks

Web
server

enterprise IP network

OEBPS/images/fig2-1.png
user
interface

user machine

module of
distributed system

send(message)

user machine

module of
distributed system

receive(message)

deliver(message)

NETWORK

OEBPS/images/fig2-10.png

OEBPS/images/fig2-11.png
..128.0/21 contains
..128.0t0..135.255

..128.0/22 contains
..128.0t0..131.255

..128.0/23 contains
..128.0t0..129.255

..128.0/24 contains
..128.0t0..128.255

..129.0/24 contains
..129.0t0..129.255

..130.0/23 contains
..130.0t0..131.255

..132.0/22 contains
..132.0t0..135.255

OEBPS/images/fig2-12.png
weion | Pttty | e
4 bit ; in bytes (2
(4bits) (4 bits) % in bytes (2)
identifier flags fragmentation
(2) (3 bits) offset (13 bits)
time to live protocol header checksum
(1) M (2)

source name (4)

destination name (4)

options if any (0-40 in multiples of 4)

OEBPS/images/fig2-13.png
N TN TN

sessionProtocol nextProtocol destinationPort
IP network header ESP “transport mode” TCP session header HTTP session
session header header
P
sessionProtocol destinationPort
IP network header TCP session header TLS session header HTTP session

header

OEBPS/images/fig3-17.png
%

Chicago
San <

Francisco

Denver

Albuquerque _,____..-—V\l;ort

orth

—~—————— Houston
Antonio

OEBPS/images/fig3-18.png

OEBPS/images/fig3-19.png
tenant

VM softswitch Ethernet T softswitch VM
S sc=wdst=x >
o) tenant
from-W to-S from-R v to-X X
inLink header outLink inLink header outLink
forwarding . dst ~ src dst forwardin
table from-W| 2 w x| t© S I from-R |= W =X‘ to-X bt g
overlay overlay underlay overlay overlay underlay
network member member network member member
attachment attachment
table T | R ‘ R | | T | s ‘ S ‘ table
overlay underlay overlay underlay
link header link header
. . src=R srtc=R .)
implementation _ implementation
send table to-S dst=5 to-R dst=S receive table
overlay=T overlay =T

src=R, dst=S, overlay=T

data-center
IP network

OEBPS/images/fig3-2.png
CORE
NETWORKS

ACCESS
NETWORKS

EDGE
NETWORKS

TRANSIT
NETWORKS

OEBPS/images/fig3-20.png
N

N

src=R, sessionProtocol
dst=S =UDP

destinationPort
(next session protocol)

overlay=T

IP network header

UDP session header

VX1 AN session header

OEBPS/images/fig3-3.png
path to A,
length 2

network network

path to A,
length 1

path to A,
length 1

OEBPS/images/fig3-4.png
initiator

OEBPS/images/fig3-5.png
initiator

src=P, srcPort=X

dst=W, dstPort=_80

~
Ay

src=NAT, srcPort=Y

private network

public Internet

OEBPS/images/fig3-6.png
machine

src = alice@example.com,
dst=info12125551212@pstn

alice@

example.com
initiator

info1212-
5551212
@pstn

src=1000 333 4444,
dst=12125551212

1212
5551212
acceptor

voice-over-IP application network

interoperation proxy

Public Switched Telephone Network

OEBPS/images/fig3-7.png
machine machine

OVERLAY
NETWORK A . B
implemented link

Over
transmit (packet) acquire (packet)
implementation :
send (message) receive (message)

UNDERLAY src=a, dst = b, overlay = Over
NETWORK implementing session

OEBPS/images/fig2-8.png
network

message of P

header
s ’ N\
session
header
f A \
desti- i other . .
source ; session session payload oth'er session network
name nation protocol network identifier | deseriptor session payload footer footer
name P fields e fields
overfay or overlay data or
next protocol Q message of Q
Y

OEBPS/images/fig2-9.png
. session protocol

or overlay
preamble | start-of-frame | destination | source | Ether- payload frame check
(7) delimiter name name type (46-1500) sequence
Q) (6) (6)) (4)

OEBPS/images/fig3-1.png
machine

module of
distributed
system

machine

module of
distributed
system

source = A0, destination = B9

gateway

gateway

Network A

bridgihg link

Network B

OEBPS/images/fig3-10.png
DHCP
server
140.252.13.34,

new IP
member

. Discover:
¢ src=0.0.0.0,
© dst=255.255.255.255,

: srcPort = 68, dstPort=67,
: transaction =t1

Offer: :
src=140.252.13.34, :
dst =255.255.255.255,
srcPort =67, dstPort =68, .
transaction =t1,
yourName = 140.252.13.76,
lease = 3600 secs

. Request:
© src=0.0.0.0,

© dst = 255.255.255.255,

. srcPort = 68, dstPort = 67,
. transaction = t2,

* DHCPserver = 140.252.13.34,
myName = 140.252.13.76,

lease = 3600 secs Acknowledge:

src=140.252.13.34, :
dst = 255.255.255.255, -
srcPort =67, dstPort =68, :
transaction =t2, :
yourName = 140.252.13.76, :
lease = 3600 secs

time

OEBPS/images/fig3-11.png
World-Wide
Web

Internet

machine content-delivery machine

. instance.
__________ HTTPsession _______ com
example.
virtual link - com
* implementation
_____________ S

TCP/TLS session
serverNamelndication = example.com

OEBPS/images/fig3-12.png
recursive
request
and response

1

DNS root

server

2
iterative
3 requests
and responses
4
local DNS > top-le\(el
server < domain
- 5 server
6
7 authoritative
server

second-level
domain
server

OEBPS/images/fig3-13.png
World-Wide G
Web implemented link

* implementing session

Internet
bridged with
edge network

OEBPS/images/fig3-14.png
World-Wide
Web

client

dst = www.example.com

dst = www]1.example.com

load
balancer

www.example.com

implemehted links

www2.example.com

OEBPS/images/fig3-15.png
usermachine ~ Web

Web machine

HTTP session embedded in TLS session))
. example
Web client - - - “com
virtual link . .
:implementation
Tor volunteer Tor volunteer Tor volunteer
Tor machine machine : machine
TCP session

L src=d, dst=w

_ TCP/TLSsession

SrC:al dsr:b
member Jee-- it
a

B
]

TCP/TLS session > TCP/TLS session
src=b,dst=c src=¢ dst=d

Internet

OEBPS/images/fig3-16.png
P
network

student group

administrators’ group

OEBPS/images/fig4-2.png
BEFORE

machineof .
outer member

overlay
member

overlay
link

AFTER

OEBPS/images/fig4-3.png
outer
members

inner \
members

N

BEFORE

s, . .
,7 . implementation
e “. oflinkK

K

implementation "
of link L

AFTER

OEBPS/images/fig4-4.png
ol

I g’ P N1
P forwarder forwarder
transit

network
Cok = (1-p) X,;

Xgj == === == m e .
/

MPLS
network

OEBPS/images/fig4-5.png
g \
1 .
virtual /\
edge - middlebox
network : v
‘implementation : implementation
———— Y ok RN E R [—— [P .
base T N I R T D R
Internet
edge transit edge transit edge

network networks network networks network

OEBPS/images/fig4-6.png
Accretionary
wedge

Moho

<= | jthosphere

Lithosphere s

Asthenosphere \

OEBPS/images/fig4-7.png
tenant
(virtual edge)
network

virtual

softswitch .
machine

edge network
and transit networks

data-center network

OEBPS/images/fig4-8.png
virtual N
edge R R W L1 C\UE \
network \

base
Internet

OEBPS/images/fig4-9.png
virtual island network

f_ P * implements \MZ J w
A D
Bl oo] LC
! 1
forV\I/:a]rder @ @ @ Qy\ forV\I/:a4rder

base Internet

OEBPS/images/fig5-1.png
applications and
distributed systems

use communication sessions
for various purposes

enhanced network
services

satisfy application requirements,
overcome obstacles
to the success of
communication sessions

the base Internet

achieve global reachability
between session endpoints

OEBPS/images/fig5-10.png
&

implements :

e X

OEBPS/images/fig3-8.png
machines

transit network access network edge network
_O M) M) M) () M) O
: / : / : / : / : / :
: attachments
Ilnk |mp|ementat|ons in machines

o9 69 63 b9 g b0

MPLS PPP PPP Ethernet PPP Wi-Fi
network network network network network network

OEBPS/images/fig3-9.png
edge network

transit networks

gateway user member

edge network

Ethernet
network

Ethernet
network

OEBPS/images/fig4-1.png
campus network e

Jgroup T e : . . y ;
wsubnet. “groyp . e
N . subnet - k . :

. transit [*ree.. .
“-._networks

OEBPS/images/fig4-10.png
HTTP

TCP

P src=El, dst=E7

ESP

P src=V1,dst=P5

GTP

UbP

P src=F2,dst=F3

MPLS

MPLS

Ethernet

-+ private Web-based
appllcatlon network

..- VPN bridged with

enterprise network

4G mobile
IP network

-+ IP transit network

Multi-Protocol Label
Switching network

" -another MPLS network

. Ethernet network

OEBPS/images/fig4-11.png
employee | enterprise

laptop machine
____________________ HTPsesson ____________________
Web Web
browser private Web-based application network server
enterprise
: machine
virtual private network TCP session

T TTTTT T TT T src=El, dst=67 T

VPN clien _ VPN server)
E1 secure dynamic link E5
coffee-shop
machine
scre=V1,dst=P5 src=N4, dst=P5
R N S

9
ef

edge network in a coffee shop transit networks enterprise edge network

OEBPS/images/fig4-12.png
cellphone

cell tower

4G mobile
network

virtual
machine

virtual
machine

base
station

V2

scre=V1,dst=P5

compound ESP session

4G

forwarder

V3

= N4, dst=P5
>

GTP session

cellular radio network

cellular IP
edge network

transit network

tenant-like
data-center network

OEBPS/images/fig4-13.png
cellphone

enterprise

machine
HTTP session >,
b Web Web
rowser private Web-based application network server
enterprise
machine
virtual private network TCP session
src=E1, dst=E7 =
VPN £; VPN N
client 7\ server R
N
N
Y
N
cell tower VM VM N
Y
src=V1,dst=P5 compound ESP session enterprise A R

D—@——E&-ED
station, warder/ " ° y
v \
4G mobile network Y
Y Src=N4,
\ dst=P5
\
T \ ' transit
. tenant-like \ networks
transit data-center
network network
cellular Pt el =~
. src=F2,
radio cellular dst=F3 :
network IP edge N 1 P . @' -
network

machine

enterprise
edge network

OEBPS/images/fig4-14.png
cellular IP
edge network

. transit [-
“-._networks

OEBPS/images/fig4-15.png
user IPYN gateway gateway user
machine machine machine machine

src=By , dst= CN

- virtual link N virtual link N
D . 2

fragments 6f|Pv(N—1)

OEBPS/images/fig4-16.png
public
core

network _-”

private path

access [1 a4l ____
networks point of
presence
edge
networks

private
transit
network

hyperscaler
data center

